Skip to main content
Log in

Early impact of quantum physics on chemistry: George Hevesy’s work on rare earth elements and Michael Polanyi’s absorption theory

  • Published:
Foundations of Chemistry Aims and scope Submit manuscript

Abstract

After Heitler and London published their pioneering work on the application of quantum mechanics to chemistry in 1927, it became an almost unquestioned dogma that chemistry would soon disappear as a discipline of its own rights. Reductionism felt victorious in the hope of analytically describing the chemical bond and the structure of molecules. The old quantum theory has already produced a widely applied model for the structure of atoms and the explanation of the periodic system. This paper will show two examples of the entry of quantum physics into more classical fields of chemistry: inorganic chemistry and physical chemistry. Due to their professional networking, George Hevesy and Michael Polanyi found their ways to Niels Bohr and Fritz London, respectively, to cooperate in solving together some problems of classical chemistry. Their works on rare earth elements and adsorption theory throws light to the application of quantum physics outside the reductionist areas. They support the heuristic and persuasive value of quantum thinking in the 1920–1930s. Looking at Polanyi’s later oeuvre, his experience with adsorption theory could be a starting point of his non-justificationist philosophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Some recent biographies of Hevesy and Polanyi: Niesse (2005), Scott et al. (2005).

  2. A vast amount of literature discussed this problem. See, e.g., Melhado (1985).

  3. Mary Jo Nye analyzed the general features of disciplines, mainly chemistry, through their identities (Nye 1993).

  4. In the vast literature see, e.g. Fleming (1969).

  5. Luis Navarro shows that Einstein relied on statistical physics in the derivation of this law. This fact is significant because statistical mechanics proved to be particularly successful in the physical reduction of thermodynamics (Navarro 1991).

  6. Bohr’s classic papers were reprinted in Bohr 1963. On his later results see Bohr 1965. About the extension of Bohr's building-up theory to molecules, see Buhm Soon Park (2001).

  7. On the history of quantum chemistry see Nye (1993, pp. 227–261).

  8. Buhm Soon Park emphasized that quantum chemistry was gradually put on a technical, computational character with a diminishing physical relevance. He claimed that while searching for new approximation methods, quantum chemistry changed more into an instrument for producing values closer to experimental data than developing new conceptual approaches (Park 2007).

  9. Hevesy told this story many times, including his biographical notes that were published with insignificant corrections by Cockroft as an obituary of Hevesy (Cockroft 1967). The original publication was Coster and Hevesy 1923, and Hevesy published a monograph on the new element: Hevesy 1927.

  10. About the controversy, see Kragh 1980.

  11. About Polanyi’s times in Berlin see Nye (2007).

  12. The chemists' favorable reaction was reported in an interview with Hermann Mark. Scott et al. (2005), p. 74.

  13. Langmuir's fundamental paper: Langmuir (1918). A wider view: (Langmuir 1932).

References

  • Bohr, N.: The structure of the atom, (Nobel Lecture, 11 December 1922.) In: Nobel Lectures, Physics, 1922–1941. Elsevier Publishing Company, Amsterdam (1965)

  • Bohr, N.: On the constitution of atoms and molecules. In: Rosenfeld, L. (ed.) Papers of 1913 reprinted from the Philosophical Magazine, with an introduction Munksgaard: Copenhagen/W.A. Benjamin: New York (1963)

  • Cockroft, J.D.: George de Hevesy 1885–1966. Biogr. Mem. Fellows R.Soc. 13, 125–166 (1967)

    Article  Google Scholar 

  • Encyclopedia Britannica http://www.britannica.com/nobelprize/article-80831 Accessed 8 Mar 2011

  • Coster, D., Hevesy, G.: On the new element hafnium. Nature 111, 182 and 252 (1923)

    Google Scholar 

  • Dirac, P.A.M.: Quantum mechanics of many electron systems. Proc. R. Soc. Lond. A123, 714–733 (1929)

    Google Scholar 

  • Eisenschitz, R., London, F.:“Über das Verhaltnis der van der Waalsschenkräfte zu den homoopolaren Bindungskräften.” Z. Phys. 60, 491 (1930)

  • Erdey-Gruz, T., Schay, G.: Elméleti Fizikai Kémia. (Theoretical Physical Chemistry),: Tankönyvkiado, Budapest (1952–1954), 4 edn, vol. 2 (1964)

  • Fleming, D.: Émigré physicists and the biological revolution. In: Fleming, D., Bailyn, B. (eds.) The Intellectual Migration: Europe and America, 1930–1960, pp. 152–189. Harvard University Press, Cambridge, MA (1969)

    Google Scholar 

  • Gavroglu, K., Simões, A.: The Americans, the Germans, and the beginnings of quantum chemistry: The confluence of diverging traditions. Hist. Stud. Phys. Biol. Sci. 25(1), 47–110 (1994)

    Google Scholar 

  • Gieryn, T.: Cultural Boundaries: of Science: Credibility on the Line. Chicago University Press. Chicago, London (1999)

    Google Scholar 

  • Heitler, W., London, F.: Wechselwirkung neutraler Atome und homöopolare Bindung nach der Qauntenmechanik. Z. Phys. 44, 455–472 (1927)

    Article  Google Scholar 

  • Hevesy, G.: Das Element Hafnium. Springer, Berlin (1927)

    Google Scholar 

  • Kragh, H.: Anatomy of a priority conflict: The case of element 72. Centaurus 23, 275–301 (1980)

    Article  Google Scholar 

  • Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361–1403 (1918)

    Article  Google Scholar 

  • Langmuir, I.: Surface chemistry. Nobel Lecture, 14 December 1932. http://nobelprize.org/nobel_prizes/chemistry/laureates/1932/langmuir-lecture.pdf Assesed 12 March 2011

  • London, F., Polanyi, M.: Über die atomtheoretische Deutung der Adsorptionskräfte. Naturwissenschaften 18, 1099–1100 (1930)

    Article  Google Scholar 

  • London, F.: Properties and applications of molecular force. Z. Phys. Chem. B 11, 222–251 (1930a)

    Google Scholar 

  • London, F.: Theorie und Systematik der Molekularkräfte. Z. Phys. 63, 245–279 (1930b)

    Article  Google Scholar 

  • Melhado, E.M.: Chemistry, physics, and the chemical revolution. Isis 76, 195–211 (1985)

    Article  Google Scholar 

  • Navarro, L.: On Einstein’s statistical-mechanical approach to the early quantum theory (1904–1916). Hist. Scient. 1, 39–58 (1991)

    Google Scholar 

  • Nernst, W.: Theoretische chemie vom standpunkte der avogadroschen regel und der thermodynamik, 1st edn. Verlag von Ferdinand Enke, Stuttgart (1893)

    Google Scholar 

  • Niesse, S.: Georg von Hevesy: Wissenschaftler ohne Grenzen. Forschungszentrum Rossendorf, Dresden (2005)

  • Nye, M.J.: From Chemical Philosophy to Theoretical Chemistry: Dynamics of Matter and Dynamics Of Disciplines, 1800–1950. University of California Press, Berkley, Los Angeles, London (1993)

    Google Scholar 

  • Nye, M.J.: At the boundaries: Michael Polanyi’s work on surfaces and the solid state. In: Reinhardt, C. (ed.) Chemical Sciences in the 20th Century. Wiley-VCH, Weinheim (2001)

    Google Scholar 

  • Nye, M.J.: Michael Polanyi’s theory of surface adsorption: How premature? In: Hooke, E.B. (ed.) Prematurity in Scientific Discovery: On Resistance and Neglect, pp. 151–164. University of California Press, Berkeley (2002)

    Google Scholar 

  • Nye, M.J.: Historical source of science-as-a-social-practice: Michael Polanyi in Berlin. Hist. Stud. Phys. Biol. Sci. 37(2), 409–434 (2007)

    Article  Google Scholar 

  • Park, B.S.: A principle written in diagrams: The Aufbau principle for molecules and its visual representations. 1927–1932. In: Klein, U. (ed.) Tools and Modes of Representation in the Laboratory Sciences, pp. 179–198. Kluwer Academic Publishers, Dordrecht, Boston, London (2001)

    Google Scholar 

  • Park, B. S.: Computational Imperatives in Quantum Chemistry. Paper presented at the HQ-1 conference, 2–6 July 2007, Berlin. http://quantum-history.mpiwg-berlin.mpg.de/eLibrary/hq1_talks/chemistry/28_park (2007). Accessed 8 March 2011

  • Polanyi, M.: Adsorption, Quellung und osmotischen Druck von Kolloiden. Biochem. Z. 66, 258–268 (1914a)

    Google Scholar 

  • Polanyi, M.: Über die Adsorption vom Standpunkt des dritten Wärmesatzes. Verh. Dtsch. Phys. Ges. 16, 1012–1016 (1914b)

    Google Scholar 

  • Polanyi, M.: Über Adsorption und Kapillarität vom Standpunkte des II. Hauptsatzes. Z. Phys. Chem. 88, 622–631 (1914c)

    Google Scholar 

  • Polanyi, M.: Adsorption von Gasen (Dampfen) durch ein festes nichtflüssiges Adsorbens. Verh. Dtsch. Phys. Ges. 18, 55–80 (1916)

    Google Scholar 

  • Polanyi, M.: Personal knowledge. Routledge and Kegan Paul, London (1958). Chicago University Press, Chicago (1958)

    Google Scholar 

  • Polányi, M.: Gázok (gőzök) adsorbtiója szilárd, nem illanó adsorbensen. (The adsorption of gases and dumps on solid adsorbents.) Doktori disszertáció. (PhD Theses) Budapest (1917)

  • Polanyi, M.: The potential theory of adsorption. Science 141, 1010–1013 (1963)

    Article  Google Scholar 

  • Popper, K.: The Open Universe. Hutchinson, London (1982)

    Google Scholar 

  • Popper, K.: The Logic of Scientific Discovery. Hutchinson, London (1959)

    Google Scholar 

  • Scerri, E.: Prediction of the nature of hafnium from chemistry: Bohr’s theory and quantum theory. Ann. Sci. 51, 137–150 (1994)

    Article  Google Scholar 

  • Scerri, E.: Popper’s naturalized approach to the reduction of chemistry. Int. Stud. Phil. Sci. 12, 33–44 (1998)

    Article  Google Scholar 

  • Schrödinger, E.: What is Life?. Cambridge University Press, Cambridge (1944)

    Google Scholar 

  • Scott, W.T., Martin, X., Moleski, M.X.: Michael Polanyi: Scientist and Philosopher. Oxford University Press, Oxford (2005)

    Book  Google Scholar 

  • Simões, A.: Chemical physics and quantum chemistry in the twentieth century. In: Nye, M.J. (ed.) The Modern Physical and Mathematical Sciences. The Cambridge History of Science, vol. 5, pp. 394–412. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  • Simões, A., Gavroglu, K.: Issues in the history of theoretical and quantum chemistry, 1927–1960. In: Reinhardt, C. (ed.) Chemical Sciences in the 20th Century, pp. 51–74. Wiley-VCH, Weinheim (2001)

    Chapter  Google Scholar 

  • Szabadváry, F.: The history of the discovery and separation of the rare earths. In: Gschneider, K.A., Eyring Jr, L. (eds.) Handbook of the Physics and Chemistry of Rare Earths, vol. 11, pp. 33–80. Elsevier Science Publisher, Amsterdam (1988)

    Google Scholar 

  • Thyssen, P., Binnemans, K.: Accommodation of the rare earths in the periodic table: A historical analysis. In: Gschneidner, K.A. (ed.) Handbook on the Physics and Chemistry of Rare Earths, vol. 41, pp. 1–94. Academic Press, Burlington (2011)

    Google Scholar 

  • Wigner, E.P., Hodgkin, R.A.: Michael Polanyi, 12 March 1891–1822 February, 1976. Biogr. Mem. Fellows R. Soc. 23, 412–448 (1977)

    Google Scholar 

  • Wolfram, E.: Kolloidika. (Colloid Chemistry. Lecture notes for chemistry students of the Eötvös Lorand University): Tankönyvkiado, Budapest (1965)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabor Pallo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pallo, G. Early impact of quantum physics on chemistry: George Hevesy’s work on rare earth elements and Michael Polanyi’s absorption theory. Found Chem 13, 51–61 (2011). https://doi.org/10.1007/s10698-011-9105-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10698-011-9105-1

Keywords

Navigation