Skip to main content
Log in

Growth, enzymatic glutathione peroxidase activity and biochemical status of juvenile barramundi (Lates calcarifer) fed dietary fermented soybean meal and organic selenium

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Solvent-extracted soybean meal (SBM) was fermented using baker’s yeast Saccharomyces cerevisae at 30 °C for 5 days. Four isonitrogenous and isocaloric diets containing 75% SBM protein, either fermented or non-fermented (SBM and FSBM), and supplemented or not with organic Se (OS) (SBMOS and FSBMOS), were fed to triplicate groups of juvenile barramundi (Lates calcarifer) (initial weight of 5 g) for 75 days. A fishmeal (FM)-based diet formulated for juvenile barramundi was used as a reference diet. The growth of fish was significantly affected by either the interaction of SBM type or by the OS level. In fish fed diets supplemented with OS (SBMOS and FSBMOS), final weight (FW), specific growth rate (SGR) and weight gain (WG) were higher in fish fed the fermented SBM (FSBMOS) than in those fed the non-fermented SBM (SBMOS). The apparent digestibility coefficient (ADC) of protein was higher in the fish fed the fermented SBM, either supplemented or unsupplemented with OS. However, there were no significant differences in the ADC of dry matter (DM) and lipids among the tested diets and in comparison to the reference diet. The haematocrit and leucocrit of fish fed the FSBMOS diet were lower than those of fish fed the FM diet. Furthermore, glutathione peroxidase (GPx) activity was significantly influenced by OS supplementation in the experimental diets; GPx activity was greater in the fish fed diets supplemented with OS. Creatinine kinase (CK) of all groups of fish was higher than the CK of those fed the reference diet. These results suggest that with a proper nutritional level, OS supplementation may act as an important factor in enzymatic GPx activity and in the haematology and blood biochemistry status of juvenile barramundi fed fermented SBM-based diets, encouraging improvement of the overall growth performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdul Kader M, Koshio S, Ishikawa M, Yokoyama S, Bulbul M, Honda Y, Mamauag R, Laining A (2011) Growth, nutrient utilization, oxidative condition, and element composition of juvenile red sea bream Pagrus major fed with fermented soybean meal and scallop by-product blend as fishmeal replacement. Fish Sci 77:119–128

    Article  CAS  Google Scholar 

  • Adams SM, Brown AM, Goede RW (1993) A quantitative health assessment index for rapid rvaluation of fish condition in the field. Trans Am Fis Soc 122:63–73

    Article  Google Scholar 

  • Anderson RL, Wolf WJ (1995) Compositional changes in trypsin inhibitors, phytic acid, saponins and isoflavones related to soybean processing. J Nutr 125:581S–588S

    CAS  PubMed  Google Scholar 

  • Andreeva AM (2012) Structural and functional Organization of Fish Blood Proteins. Nova Science Publishers Inc, New York

    Google Scholar 

  • AOAC (1990) Official methods of analysis of the Association of Official Analytical Chemists. The Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • Ashida T, Okimasu E (2005) Immunostimulatory effects of fermented vegetable product on the non-specific immunity of Japanese flounder Paralichthys olivaceus. Fish Sci 71:257–262

    Article  CAS  Google Scholar 

  • Ashida T, Takel Y, Takagaki M, Matsuura Y, Okimasu E (2006) The dietary effects of a fermented vegetable product on glutathione peroxidase activity and lipid peroxidation of Japanese flounder Paralichthys olivaceus. Fish Sci 72:179–184

    Article  CAS  Google Scholar 

  • Austreng E (1978) Digestibility determination in fish using chromic oxide marking and analysis of contents from different segments of the gastrointestinal tract. Aquaculture 13:265–272

    Article  Google Scholar 

  • Azarm HM, Lee S-M (2014) Effects of partial substitution of dietary fish meal by fermented soybean meal on growth performance, amino acid and biochemical parameters of juvenile black sea bream Acanthopagrus schlegeli. Aquac Res 45:994–1003

    Article  CAS  Google Scholar 

  • Barkholt V, Jensen AL (1989) Amino acid analysis: determination of cysteine plus half-cystine in proteins after hydrochloric acid hydrolysis with a disulfide compound as additive. Anal Biochem 177:318–322

    Article  CAS  PubMed  Google Scholar 

  • Bell JG, Cowey CB, Adron JW, Pirie BJS (1987) Some effects of selenium deficiency on enzyme activities and indices of tissue peroxidation in Atlantic salmon parr (Salmo salar). Aquaculture 65:43–54

    Article  CAS  Google Scholar 

  • Biswas AK, Kaku H, Ji SC, Seoka M, Takii K (2007) Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture 267:284–291

    Article  CAS  Google Scholar 

  • Blaxhall PC (1972) The haematological assessment of the health of freshwater fish. J Fish Biol 4:593–604

    Article  CAS  Google Scholar 

  • Boonyaratpalin M, Suraneiranat P, Tunpibal T (1998) Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aquaculture 161:67–78

    Article  CAS  Google Scholar 

  • Bowyer JN, Qin JG, Stone DAJ (2013a) Protein, lipid and energy requirements of cultured marine fish in cold, temperate and warm water. Rev Aquac 5:10–32

    Article  Google Scholar 

  • Bowyer JN, Qin JG, Smullen RP, Adams LR, Thomson MJS, Stone DAJ (2013b) The use of a soy product in juvenile yellowtail kingfish (Seriola lalandi) feeds at different water temperatures: 1. Solvent extracted soybean meal Aquaculture 384–387:35–45

    Google Scholar 

  • Bowyer JN, Qin JG, Smullen RP, Adams LR, Thomson MJS, Stone DAJ (2013c) The use of a soy product in juvenile yellowtail kingfish (Seriola lalandi) feeds at different water temperatures: 2. Soy protein concentrate Aquaculture 410–411:1–10

    Google Scholar 

  • Brown PB, Williams CD, Robinson EH, Akiyama DM, Lawrence AL (1986) Evaluation of methods for determining in vivo digestion coefficients for adult red swamp crayfish Procambarus clarkii. J World Aquacult Soc 17:19–24

    Article  Google Scholar 

  • Catacutan MR, Coloso RM (1995) Effect of dietary protein to energy ratios on growth, survival, and body composition of juvenile Asian seabass, Lates calcarifer. Aquaculture 131:125–133

    Article  CAS  Google Scholar 

  • Catacutan MR, Coloso RM (1997) Growth of juvenile Asian seabass, Lates calcarifer, fed varying carbohydrate and lipid levels. Aquaculture 149:137–144

    Article  CAS  Google Scholar 

  • Chen C-Y, Wooster GA, Getchell RG, Bowser PR, Timmons MB (2003) Blood chemistry of healthy, nephrocalcinosis-affected and ozone-treated tilapia in a recirculation system, with application of discriminant analysis. Aquaculture 218:89–102

    Article  CAS  Google Scholar 

  • Cho CY, Slinger SJ, Bayley HS (1982) Bioenergetics of salmonid fishes: energy intake, expenditure and productivity. Comp Biochem Physiol 73:25–41

    Article  Google Scholar 

  • Chu G-M, Ohmori H, Kawashima T, Funaba M, Matsui T (2009) Brewer’s yeast efficiently degrades phytate phosphorus in a corn-soybean meal diet during soaking treatment. Anim Sci J 80:433–437

    Article  CAS  PubMed  Google Scholar 

  • Collins SA, Desai AR, Mansfield GS, Hill JE, Van Kessel AG, Drew MD (2012) The effect of increasing inclusion rates of soybean, pea and canola meals and their protein concentrates on the growth of rainbow trout: concepts in diet formulation and experimental design for ingredient evaluation. Aquaculture 344–349:90–99

    Article  CAS  Google Scholar 

  • Connelly P (2011) Nutritional advantages and disadvantages of dietary phytates: part 1. J Aust Tradit-Med Soc 17:21–24

    Google Scholar 

  • Cosgrove R, Arregui I, Arrizabalaga H, Goni N, Sheridan M (2014) New insights to behaviour of North Atlantic albacore tuna (Thunnus alalunga) observed with pop-up satellite archival tags. Fish Res 150:89–99

    Article  Google Scholar 

  • Cotter P (2006) Dietary selenium in cultured hybrid striped bass, fisheries & wildlife sciences. Virginia Polytechnic Institute and State University, Virginia, p. 101

    Google Scholar 

  • Cotter PA, Craig SR, McLean E (2008) Hyperaccumulation of selenium in hybrid striped bass: a functional food for aquaculture? Aquac Nutr 14:215–222

    Article  CAS  Google Scholar 

  • Elangovan A, Shim KF (2000) The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Barbodes altus). Aquaculture 189:133–144

    Article  Google Scholar 

  • El-Asely AM, Abbass AA, Austin B (2014) Honey bee pollen improves growth, immunity and protection of Nile tilapia (Oreochromis niloticus) against infection with Aeromonas hydrophila. Fish Shellfish Immunol 40:500–506

    Article  CAS  PubMed  Google Scholar 

  • Elia AC, Prearo M, Pacini N, Dörr AJM, Abete MC (2011) Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol Environ Saf 74:166–173

    Article  CAS  PubMed  Google Scholar 

  • Fagbenro D (2001) Use of soybean flour (dehulled, solvent-extracted soybean) as a fish meal substitute in practical diets for African catfish, Clarias gariepinus (Burchell 1822): growth, feed utilization and digestibility. J Appl Ichthyol 17:64–69

    Article  CAS  Google Scholar 

  • Feng J, Liu X, Xu ZR, Liu YY, Lu YP (2007) Effects of Aspergillus oryzae 3.042 fermented soybean meal on growth performance and plasma biochemical parameters in broilers. Anim Feed Sci Tech 134:235–242

    Article  CAS  Google Scholar 

  • Fontagne-Dicharry S, Godin S, Liu H, Antony Jesu Prabhu P, Bouyssiere B, Bueno M, Tacon P, Medale F, Kaushik SJ (2015) Influence of the forms and levels of dietary selenium on antioxidant status and oxidative stress-related parameters in rainbow trout (Oncorhynchus mykiss) fry. Br J Nutr 113:1876–1887

    Article  CAS  PubMed  Google Scholar 

  • Francis G, Makkar HPS, Becker K (2001) Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199:197–227

    Article  CAS  Google Scholar 

  • Fredlund K, Isaksson M, Rossander-Hulthen L, Almgren A, Sandberg AS (2006) Absorption of zinc and retention of calcium: dose-dependent inhibition by phytate. J Trace Elem Med Biol 20:49–57

    Article  CAS  PubMed  Google Scholar 

  • García-Mantrana I, Monedero V, Haros M (2015) Reduction of phytate in soy drink by fermentation with Lactobacillus casei expressing phytases from Bifidobacteria. Plant Foods Hum Nutr 70:269–274

    Article  PubMed  CAS  Google Scholar 

  • Gatlin DM, Wilson RP (1984) Dietary selenium requirement of fingerling channel catfish. J Nutr 114:627–633

    CAS  PubMed  Google Scholar 

  • Gatlin DM, Poe WE, Wilson RP (1986) Effects of singular and combined dietary deficiencies of selenium and vitamin E on fingerling channel catfish (Ictalurus punctatus). J Nutr 116:1061–1067

    CAS  PubMed  Google Scholar 

  • Glencross BD (2006) The nutritional management of barramundi, Lates calcarifer– a review. Aquac Nutr 12:291–309

    Article  CAS  Google Scholar 

  • Glencross B, Rutherford N (2010) Dietary strategies to improve the growth and feed utilization of barramundi, Lates calcarifer under high water temperature conditions. Aquac Nutr 16:343–350

    Article  CAS  Google Scholar 

  • Glencross BD, Rutherford N, Jones B (2011) Evaluating options for fishmeal replacement in diets for juvenile barramundi (Lates calcarifer). Aquac Nutr 17:e722–e732

    Article  Google Scholar 

  • Goddard MR, Greig D (2015) Saccharomyces cerevisiae: a nomadic yeast with no niche? FEMS Yeast Res 15:fov009

    Article  PubMed  PubMed Central  Google Scholar 

  • Gratzfeld-Huesgen A, 1998) Sensitive and reliable amino acid analysis in protein hydrolysates using the Agilent 1100 series HPLC, Technical Note. Agilent Technologies

  • Han D, Xie S, Liu M, Xiao X, Liu H, Zhu X, Yang Y (2011) The effects of dietary selenium on growth performances, oxidative stress and tissue selenium concentration of gibel carp (Carassius auratus gibelio). Aquac Nutr 17:e741–e749

    Article  Google Scholar 

  • Hao X, Ling Q, Hong F (2014) Effects of dietary selenium on the pathological changes and oxidative stress in loach (Paramisgurnus dabryanus). Fish Physiol Biochem 40:1313–1323

    Article  CAS  PubMed  Google Scholar 

  • Hardy RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res 41:770–776

    Article  CAS  Google Scholar 

  • Hardy R, Oram L, Möller G (2010) Effects of dietary selenomethionine on cutthroat trout (Oncorhynchus clarki bouvieri) growth and reproductive performance over a life cycle. Arch Environ Contam Toxicol 58:237–245

    Article  CAS  PubMed  Google Scholar 

  • Hassaan MS, Soltan MA, Abdel-Moez AM (2015) Nutritive value of soybean meal after solid state fermentation with Saccharomyces cerevisiae for Nile tilapia, Oreochromis niloticus. Anim Feed Sci Tech 201:89–98

    Article  CAS  Google Scholar 

  • Hernández MD, Martínez FJ, Jover M, García García B (2007) Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture 263:159–167

    Article  CAS  Google Scholar 

  • Hilton JW, Hodson PV, Slinger SJ (1980) The requirement and toxicity of selenium in rainbow trout (Salmo gairdneri). J Nutr 110:2527–2535

    CAS  PubMed  Google Scholar 

  • Hossain MA, Jauncey K (1993) The effects of varying dietary phytic acid, calcium and magnesium levels on the nutrition of common carp, Cyprinus carpio. in: INRA (Ed), The 4th International Symposium on Fish Nutrition and Feeding, Biarritz, France, pp. 705–715

  • Hotz C, Gibson RS (2007) Traditional food-processing and preparation practices to enhance the bioavailability of micronutrients in plant-based diets. J Nutr 137:1097–1100

    CAS  PubMed  Google Scholar 

  • Ilham I, Siddik MAB, Fotedar R (2016a) Effects of organic selenium supplementation on growth, accumulation, haematology and histopathology of juvenile barramundi (Lates calcarifer) fed high soybean meal diets. Biol Trace Elem Res 174:436–447

    Article  CAS  PubMed  Google Scholar 

  • Ilham I, Fotedar R, Munilkumar S (2016b) Effects of organic selenium supplementation on growth, glutathione peroxidase activity and histopathology in juvenile barramundi (Lates calcarifer Bloch 1970) fed high lupin meal-based diets. Aquaculture 457:15–23

    Article  CAS  Google Scholar 

  • Jaramillo F Jr, Peng LI, Gatlin Iii DM (2009) Selenium nutrition of hybrid striped bass (Morone chrysops × M. saxatilis) bioavailability, toxicity and interaction with vitamin E. Aquac Nutr 15:160–165

    Article  CAS  Google Scholar 

  • Jeong JS, Park JW, Lee SI, Kim IH (2015) Apparent ileal digestibility of nutrients and amino acids in soybean meal, fish meal, spray-dried plasma protein and fermented soybean meal to weaned pigs. Anim Sci J: n/a-n/a

  • Kenari AA, Mahmoudi N, Soltani M, Abediankenari S (2013) Dietary nucleotide supplements influence the growth, haemato-immunological parameters and stress responses in endangered Caspian brown trout (Salmo trutta caspius Kessler, 1877). Aquac Nutr 19:54–63

    Article  CAS  Google Scholar 

  • Kim J-D, Tibbetts SM, Milley JE, Lall SP (2007) Effect of the incorporation level of dehulled soybean meal into test diet on apparent digestibility coefficients for protein and energy by juvenile haddock, Melanogrammus aeglefinus L. Aquaculture 267:308–314

    Article  CAS  Google Scholar 

  • Kim S-S, Pham M, Kim K-W, Son M-H, Lee K-J (2010) Effects of microbial fermentation of soybean on growth performances, phosphorus availability, and antioxidant activity in diets for juvenile olive flounder (Paralichthys olivaceus). Food Sci Biotechnol 19:1605–1610

    Article  CAS  Google Scholar 

  • Kucukbay FZ, Yazlak H, Karaca I, Sahin N, Tuzcu M, Cakmak MN, Sahin K (2009) The effects of dietary organic or inorganic selenium in rainbow trout (Oncorhynchus mykiss) under crowding conditions. Aquac Nutr 15:569–576

    Article  CAS  Google Scholar 

  • Kumar V, Sinha AK, Makkar HPS, De Boeck G, Becker K (2012) Phytate and phytase in fish nutrition. J Anim Physiol Anim Nutr (Berl) 96:335–364

    Article  CAS  Google Scholar 

  • Kwanyuen P, Burton JW (2005) A simple and rapid procedure for phytate determination in soybeans and soy products. J Am Oil Chem Soc 82:81–85

    Article  CAS  Google Scholar 

  • Lall SP (2003) 5 - the minerals. In: John EH, Ronald WH (eds) Fish nutrition, Third edn. Academic Press, San Diego, pp. 259–308

    Chapter  Google Scholar 

  • Laporte J, Trushenski J (2012) Production performance, stress tolerance and intestinal integrity of sunshine bass fed increasing levels of soybean meal. J Anim Physiol Anim Nutr (Berl) 96:513–526

    Article  CAS  Google Scholar 

  • Le KT, Fotedar R (2013) Dietary selenium requirement of yellowtail kingfish (Seriola lalandi). Agricult Sci 4:68–75

    CAS  Google Scholar 

  • Le KT, Fotedar R (2014a) Immune responses to Vibrio anguillarum in yellowtail kingfish, Seriola lalandi, fed selenium supplementation. J World Aquacult Soc 45:138–148

    Article  CAS  Google Scholar 

  • Le KT, Fotedar R (2014b) Bioavailability of selenium from different dietary sources in yellowtail kingfish (Seriola lalandi). Aquaculture 420–421:57–62

    Article  CAS  Google Scholar 

  • Lin Y-H, Shiau S-Y (2005) Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 250:356–363

    Article  CAS  Google Scholar 

  • Liu K, Wang XJ, Ai Q, Mai K, Zhang W (2010) Dietary selenium requirement for juvenile cobia, Rachycentron canadum L. Aquac Res 41:e594–e601

    Article  CAS  Google Scholar 

  • López LM, Flores-Ibarra M, Bañuelos-Vargas I, Galaviz MA, True CD (2015) Effect of fishmeal replacement by soy protein concentrate with taurine supplementation on growth performance, hematological and biochemical status, and liver histology of totoaba juveniles (Totoaba macdonaldi). Fish Physiol Biochem 41:921–936

    Article  PubMed  CAS  Google Scholar 

  • Lorentzen M, Maage A, Julshamn K (1994) Effects of dietary selenite or selenomethionine on tissue selenium levels of Atlantic salmon (Salmo salar). Aquaculture 121:359–367

    Article  CAS  Google Scholar 

  • Lund B, Baird-Parker TC (2000) Microbiological safety and quality of food. Aspen Publisher, Gaithersburg, MD

    Google Scholar 

  • Lyons MP, Papazyan TT, Surai PF (2007) Selenium in food chain and animal nutrition: lessons from nature - review. Asian-Australas J Anim Sci 20:1135–1155

    Article  CAS  Google Scholar 

  • Nengas I, Alexis MN, Davies SJ (1996) Partial substitution of fishmeal with soybean meal products and derivatives in diets for the gilthead sea bream Sparus aurata (L.). Aquac Res 27:147–156

    Article  Google Scholar 

  • NRC (2011) Nutrient requirements of fish and shrimp. National Academies Press, Washington, D.C.

    Google Scholar 

  • Olsen RL, Hasan MR (2012) A limited supply of fishmeal: impact on future increases in global aquaculture production. Trends Food Sci Tech 27:120–128

    Article  CAS  Google Scholar 

  • Papatryphon E, Howell RA, Soares JHJ (1999) Growth and mineral absorption by striped bass Morone saxatilis fed a plant feedstuff based diet supplemented with phytase. J World Aquacult Soc 30:161–173

    Article  Google Scholar 

  • Penglase S, Nordgreen A, van der Meeren T, Olsvik PA, Sæle Ø, Sweetman JW, Baeverfjord G, Helland S, Hamre K (2010) Increasing the level of selenium in rotifers (Brachionus plicatilis ‘Cayman’) enhances the mRNA expression and activity of glutathione peroxidase in cod (Gadus morhua L.) larvae. Aquaculture 306:259–269

    Article  CAS  Google Scholar 

  • Raes K, Knockaert D, Struijs K, Van Camp J (2014) Role of processing on bioaccessibility of minerals: influence of localization of minerals and anti-nutritional factors in the plant. Trends Food Sci Tech 37:32–41

    Article  CAS  Google Scholar 

  • Rayner CJ (1985) Protein hydrolysis of animal feeds for amino acid content. J Agric Food Chem 33:722–725

    Article  CAS  Google Scholar 

  • Reddy NR, Pierson MD (1994) Reduction in antinutritional and toxic components in plant foods by fermentation. Food Res Int 27:281–290

    Article  CAS  Google Scholar 

  • Refstie S, Storebakken T (2001) Vegetable protein sources for carnivorous fish: potential and challenges. Recent Adv Anim Nutr Aust 13:195–203

    Google Scholar 

  • Ribeiro ARA, Ribeiro L, SÆle Ø, Hamre K, Dinis MT, Moren M (2012) Selenium supplementation changes glutathione peroxidase activity and thyroid hormone production in Senegalese sole (Solea senegalensis) larvae. Aquac Nutr 18:559–567

    Article  CAS  Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  CAS  PubMed  Google Scholar 

  • Sarker MSA, Satoh S, Kiron V (2007) Inclusion of citric acid and/or amino acid-chelated trace elements in alternate plant protein source diets affects growth and excretion of nitrogen and phosphorus in red sea bream Pagrus major. Aquaculture 262:436–443

    Article  CAS  Google Scholar 

  • Sarker PK, Bureau DP, Hua K, Drew MD, Forster I, Were K, Hicks B, Vandenberg GW (2013) Sustainability issues related to feeding salmonids: a Canadian perspective. Rev Aquac 5:199–219

    Article  Google Scholar 

  • Satoh S (2007) Minerals. In: Nakagawa H, Sato M, Gatlin III DM (eds) Dietary supplements for the health and quality of cultured fish. CABI, Wallingford, UK; Cambridge, MA, p. 244

    Google Scholar 

  • Schuller D (2010) Better yeast for better wine - genetic improvement of Saccharomyces cerevisiae wine strains. In: Rai M, Kövics G (eds) Progress in mycology. Springer, Netherlands, pp. 1–49

    Chapter  Google Scholar 

  • Selle PH, Cowieson AJ, Cowieson NP, Ravindran V (2012) Protein–phytate interactions in pig and poultry nutrition: a reappraisal. Nutr Res Rev 25:1–17

    Article  CAS  PubMed  Google Scholar 

  • Shahsavani D, Mohri M, Gholipour Kanani H (2008) Determination of normal values of some blood serum enzymes in Acipenser stellatus Pallas. Fish Physiol Biochem 36:39–43

    Article  PubMed  CAS  Google Scholar 

  • Sharawy Z, Goda AMAS, Hassaan MS (2016) Partial or total replacement of fish meal by solid state fermented soybean meal with Saccharomyces cerevisiae in diets for Indian prawn shrimp, Fenneropenaeus indicus, Postlarvae. Anim Feed Sci Tech 212:90–99

    Article  CAS  Google Scholar 

  • Shi X, Li D, Zhuang P, Nie F, Long L (2006) Comparative blood biochemistry of Amur sturgeon, Acipenser schrenckii, and Chinese surgeon, Acipenser sinensis. Fish Physiol Biochem 32:63–66

    Article  CAS  PubMed  Google Scholar 

  • Shimeno S, Mima T, Yamamoto O, Ando Y (1993) Effects of fermented defatted soybean meal in diet on the growth, feed conversion, and body composition of juvenile yellowtail. Nippon Suisan Gakk 59:1883–1888

    Article  Google Scholar 

  • Sokrab AM, Mohamed Ahmed IA, Babiker EE (2014) Effect of fermentation on antinutrients, and total and extractable minerals of high and low phytate corn genotypes. J Food Sci Technol 51:2608–2615

    Article  CAS  PubMed  Google Scholar 

  • Soltanzadeh S, Esmaeili Fereidouni A, Ouraji H, Khalili KJ (2015) Growth performance, body composition, hematological, and serum biochemical responses of beluga (Huso huso) juveniles to different dietary inclusion levels of faba bean (Vicia faba) meal. Aquac Int 24:395–413

    Article  CAS  Google Scholar 

  • Storebakken T, Shearer KD, Roem AJ (1998) Availability of protein, phosphorus and other elements in fish meal, soy-protein concentrate and phytase-treated soy-protein-concentrate-based diets to Atlantic salmon, Salmo salar. Aquaculture 161:365–379

    Article  CAS  Google Scholar 

  • Sun H, J-w T, X-h Y, Wu Y-f, Wang X, Liu Y, Lou B (2015) Partial substitution of fish meal with fermented cottonseed meal in juvenile black sea bream (Acanthopagrus schlegelii) diets. Aquaculture 446:30–36

    Article  CAS  Google Scholar 

  • Tacon AGJ, Metian M (2015) Feed matters: satisfying the feed demand of aquaculture. Rev Fish Sci Aquac 23:1–10

    Article  Google Scholar 

  • Takahashi K, Cohen H (1986) Selenium-dependent glutathione peroxidase protein and activity: immunological investigations on cellular and plasma enzymes. Blood 68:640–645

    CAS  PubMed  Google Scholar 

  • Tomás-Vidal A, Martínez-Llorens S, Jambrina C, de Saja GR, Jover Cerdá M (2011) Effects of dietary soybean meal on growth, nutritive efficiency and body composition of cultured tench (Tinca tinca). J Appl Ichthyol 27:892–896

    Article  CAS  Google Scholar 

  • Usmani N, Jafri AK (2002) Influence of dietary phytic acid on the growth, conversion efficiency, and carcass composition of mrigal Cirrhinus mrigala (Hamilton) fry. J World Aquacult Soc 33:199–204

    Article  Google Scholar 

  • Van Vo B, Phan DP, Nguyen HQ, Fotedar R (2015) Optimised fermented lupin (Lupinus angustifolius) inclusion in barramundi (Lates calcarifer) juveniles diets. Aquaculture: 62–69

  • Wang C, Lovell RT (1997) Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture 152:223–234

    Article  CAS  Google Scholar 

  • Wang Y, Kong L-J, Li C, Bureau DP (2006) Effect of replacing fish meal with soybean meal on growth, feed utilization and carcass composition of cuneate drum (Nibea miichthioides). Aquaculture 261:1307–1313

    Article  Google Scholar 

  • Wang Y, Han J, Li W, Xu Z (2007) Effect of different selenium source on growth performances, glutathione peroxidase activities, muscle composition and selenium concentration of allogynogenetic crucian carp (Carassius auratus gibelio). Anim Feed Sci Tech 134:243–251

    Article  CAS  Google Scholar 

  • Watanabe T, Kiron V, Satoh S (1997) Trace minerals in fish nutrition. Aquaculture 151:185–207

    Article  CAS  Google Scholar 

  • Webster CD, Lim CE (2002) Introduction to fish nutrition. In: Webster CD, Lim CE (eds) Nutrient requirements and feeding of finfish for aquaculture. CABI Publishing, Oxon, pp. 1–27

    Chapter  Google Scholar 

  • Williams KC, Barlow CG, Rodgers L, Hockings I, Agcopra C, Ruscoe I (2003) Asian seabass Lates calcarifer perform well when fed pelleted diets high in protein and lipid. Aquaculture 225:191–206

    Article  Google Scholar 

  • Yamamoto T, Iwashita Y, Matsunari H, Sugita T, Furuita H, Akimoto A, Okamatsu K, Suzuki N (2010) Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture 309:173–180

    Article  CAS  Google Scholar 

  • Yuan Y-c, Gong S-y, Yang H-j, Lin Y-c, Yu D-h, Luo Z (2010) Apparent digestibility of selected feed ingredients for Chinese sucker, Myxocyprinus asiaticus. Aquaculture 306:238–243

    Article  Google Scholar 

  • Yuan YC, Lin YC, Yang HJ, Gong Y, Gong SY, Yu DH (2013) Evaluation of fermented soybean meal in the practical diets for juvenile Chinese sucker, Myxocyprinus asiaticus. Aquac Nutr 19:74–83

    Article  CAS  Google Scholar 

  • Zhang YQ, Wu YB, Jiang DL, Qin JG, Wang Y (2014) Gamma-irradiated soybean meal replaced more fish meal in the diets of Japanese seabass (Lateolabrax japonicus). Anim Feed Sci Tech 197:155–163

    Article  CAS  Google Scholar 

  • Zhou Q-C, Yue Y-R (2012) Apparent digestibility coefficients of selected feed ingredients for juvenile hybrid tilapia, Oreochromis niloticus × Oreochromis aureus. Aquac Res 43:806–814

    Article  CAS  Google Scholar 

  • Zhou X, Wang Y, Gu Q, Li W (2009) Effects of different dietary selenium sources (selenium nanoparticle and selenomethionine) on growth performance, muscle composition and glutathione peroxidase enzyme activity of crucian carp (Carassius auratus gibelio). Aquaculture 291:78–81

    Article  CAS  Google Scholar 

  • Zhu Y, Chen Y, Liu Y, Yang H, Liang G, Tian L (2012) Effect of dietary selenium level on growth performance, body composition and hepatic glutathione peroxidase activities of largemouth bass Micropterus salmoide. Aquac Res 43:1660–1668

    Article  CAS  Google Scholar 

  • Zhuo L-C, Liu K, Lin Y-H (2014) Apparent digestibility of soybean meal and Lactobacillus spp. fermented soybean meal in diets of grouper, Epinephelus coioides. Aquac Res: 1–4

Download references

Acknowledgments

We are grateful to the Australia Awards Scholarship and Curtin University’s Department of Environment and Agriculture for financial sponsorship. We thank the Challenger Institute of Technology (Aquaculture) and the Department of Agriculture and Food Western Australia for laboratory assistance. Our thanks are also due to Ky Trung Le for his help during final sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Ilham.

Ethics declarations

Ethical approval

Fish-handling procedures, care and facilities complied with the guidelines of the Animal Ethics Committee of Curtin University (Approval Number: AEC-2013-07) and followed the Australian Code of Practice for the care and use of animals for scientific purposes.

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilham, I., Fotedar, R. Growth, enzymatic glutathione peroxidase activity and biochemical status of juvenile barramundi (Lates calcarifer) fed dietary fermented soybean meal and organic selenium. Fish Physiol Biochem 43, 775–790 (2017). https://doi.org/10.1007/s10695-016-0331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-016-0331-2

Keywords

Navigation