Skip to main content
Log in

Regulation of adipocytes lipolysis by n-3 HUFA in grass carp (Ctenopharyngodon idellus) in vitro and in vivo

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

N-3 highly unsaturated fatty acids (n-3 HUFA) have been shown to inhibit body fat accumulation in animals. To clarify the mechanism of this fat-lowering effect of n-3 HUFA in grass carp (Ctenopharyngodon idellus), two experiments were conducted. In experiment 1, isolated grass carp mature adipocytes were incubated with docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) at different concentrations for 6 h. The release of glycerol to the medium was detected, and the expression of the lipolysis-related genes was analyzed. In experiment 2, a 95-day feeding trial was conducted with two diets formulated with either lard oil (as control) or fish oil (supplying n-3 HUFA as treatment) as the main lipid source. The glycerol and free fatty acid (FFA) released from the isolated adipocytes of both groups were detected after the feeding period. The expression of select lipolysis-related genes in adipose tissue was also analyzed. The results from experiment 1 showed that the release of glycerol was significantly increased by DHA and EPA (P < 0.05). Moreover, the expression of lipolysis-related genes, such as adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), tumor necrosis factor α (TNFα) and leptin, was also significantly elevated in the treatment group (P < 0.05). Experiment 2 demonstrated that glycerol and FFA release from the isolated adipocytes were significantly higher in the treatment group compared to the control group (P < 0.05). The expression level of ATGL, HSL, TNFα and leptin in the treatment group was significantly higher than in the control group (P < 0.05). The present results provide novel evidence that n-3 HUFAs could regulate grass carp adipocyte lipolysis in vitro or in vivo, and the effect might be in part associated with their influence on the expression of lipolysis-related genes and lipolysis-related adipokines genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ATGL:

Adipose triglyceride lipase

DHA:

Docosahexaenoic acid

EPA:

Eicosapentaenoic acid

FFA:

Free fatty acid

HSL:

Hormone sensitive lipase

HUFA:

Highly unsaturated fatty acids

MAGL:

Monoacylglycerol lipase

PBS:

Phosphate buffered saline

PKA:

Protein kinase A

TNFα:

Tumor necrosis factor α

GH:

Growth hormone

References

  • Albalat A, Gómez-Requeni P, Rojas P, Médale F, Kaushik S, Vianen GJ, Van den Thillart G, Gutiérrez J, Pérez-Sánchez J, Navarro I (2005a) Nutritional and hormonal control of lipolysis in isolated gilthead seabream (Sparus aurata) adipocytes. Am J Physiol Regul Integr Comp Physiol 289:R259–R265

    Article  CAS  PubMed  Google Scholar 

  • Albalat A, Gutiérrez J, Navarro I (2005b) Regulation of lipolysis in isolated adipocytes of rainbow trout (Oncorhynchus mykiss): the role of insulin and glucagon. Comp Biochem Physiol A 142:347–354

    Article  Google Scholar 

  • Arner P (2005) Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 19:471–482

    Article  CAS  PubMed  Google Scholar 

  • Arzel J, Lopez FXM, Metailler R, Stephan G, Viau M, Gandemer G, Guillaume J (1994) Effect of dietary lipid on growth performance and body composition of brown trout (Salmo Trutta) reared in seawater. Aquaculture 123:361–375

    Article  CAS  Google Scholar 

  • Bambace C, Telesca M, Zoico E, Sepe A, Olioso D, Rossi A, Corzato F, Di Francesco V, Mazzucco A, Santini F, Zamboni M (2011) Adiponectin gene expression and adipocyte diameter: a comparison between epicardial and subcutaneous adipose tissue in men. Cardiovasc Pathol 20:e153–e156

    Article  CAS  PubMed  Google Scholar 

  • Berger JJ, Barnard RJ (1999) Effect of diet on fat cell size and hormone-sensitive lipase activity. J Appl Physiol 87:227–232

    CAS  PubMed  Google Scholar 

  • Brasaemle DL (2007) Thematic review series: adipocyte biology. The perilipin family of structural lipid droplet proteins: stabilization of lipid droplets and control of lipolysis. J Lipid Res 48:2547–2559

    Article  CAS  PubMed  Google Scholar 

  • Cammisotto PG, Gélinas Y, Deshaies Y, Bukowiecki LJ (2003) Regulation of leptin secretion from white adipocytes by free fatty acids. Am J Physiol Endocrinol Metab 285:E521–E526

    CAS  PubMed  Google Scholar 

  • Chaiyapechara S, Casten MT, Hardy RW, Dong FM (2003) Fish performance, fillet characteristics, and health assessment index of rainbow trout (Oncorhynchus mykiss) fed diets containing adequate and high concentrations of lipid and vitamin E. Aquaculture 219:715–738

    Article  CAS  Google Scholar 

  • Coppack SW, Jensen MD, Miles JM (1994) In vivo regulation of lipolysis in humans. J Lipid Res 35:177–193

    CAS  PubMed  Google Scholar 

  • Cowey CB, Cho CY (1993) Nutritional-requirements of fish. Proc Nutr Soc 52:417–426

    Article  CAS  PubMed  Google Scholar 

  • Dias J, Alvarez M, Diez A, Arzel J, Corraze G, Bautista J, Kaushik S (1998) Regulation of hepatic lipogenesis by dietary protein/energy in juvenile European seabass (Dicentrarchus labrax). Aquaculture 161:169–186

    Article  CAS  Google Scholar 

  • Duncan RE, Ahmadian M, Jaworski K, Sarkadi-Nagy E, Sul HS (2007) Regulation of lipolysis in adipocytes. Annu Rev Nutr 27:79–101

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farnier C, Krief S, Blache M, Diot-Dupuy F, Mory G, Ferre P, Bazin R (2003) Adipocyte functions are modulated by cell size change: potential involvement of an integrin/ERK signalling pathway. Int J Obes 27:1178–1186

    Article  CAS  Google Scholar 

  • Frayn K, Arner P, YkiJärvinen H (2006) Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem 042:89–103

    Article  CAS  Google Scholar 

  • Frühbeck G, Aguado M, Martınez JA (1997) In vitro lipolytic effect of Leptin on mouse adipocytes: evidence for a possible autocrine/paracrine role of Leptin. Biochem Biophys Res Commun 240:590–594

    Article  PubMed  Google Scholar 

  • Gasic S, Tian B, Green A (1999) Tumor necrosis factor α stimulates lipolysis in adipocytes by decreasing Gi protein concentrations. J Biol Chem 274:6770–6775

    Article  CAS  PubMed  Google Scholar 

  • Granneman JG, Moore HP (2008) Location, location: protein trafficking and lipolysis in adipocytes. Trends Endocrinol Metab 19:3–9

    Article  CAS  PubMed  Google Scholar 

  • Grundy SM (2004) Obesity, metabolic syndrome, cardiovascular disease. J Clin Endocrinol Metab 89:2595–2600

    Article  CAS  PubMed  Google Scholar 

  • Gullicksen PS, Della-Fera MA, Baile CA (2003) Leptin-induced adipose apoptosis: implications for body weight regulation. Apoptosis 8:327–335

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Liang XF, Fang L, Yuan X, Zhou Y, Zhang J, Li B (2013) Effects of dietary non-protein energy source levels on growth performance, body composition and lipid metabolism in herbivorous grass carp (Ctenopharyngodon idella). Aquac Res. doi:10.1111/are.12275

    Google Scholar 

  • Ippagunta S, Hadenfeldt TJ, Miner JL, Hargrave-Barnes KM (2011) Dietary conjugated linoleic acid induces lipolysis in adipose tissue of coconut oil-fed mice but not soy oil-fed mice. Lipids 46:821–830

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Om AD, Yoshimatsu T, Umino T, Nakagawa H, Furuhashi M, Sakamoto S (2007) Effect of dietary docosahexaenoic acid on lipogenesis and lipolysis in black sea bream, Acanthopagrus schlegeli. Acta Oceanol Sin 26:112–121

    CAS  Google Scholar 

  • Ji H, Cao YZ, Liu P, Su SS, Lin YQ, Cao FY, Oku H, Zhou JS, Ye YT (2009) Effect of dietary HUFA on the lipid metabolism in grass carp Ctenopharymgodon idellus. Acta Hydrobiol Sinica 33:881–889

    Article  CAS  Google Scholar 

  • Ji H, Li J, Liu P (2011) Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp, Ctenopharyngodon idellus. Comp Biochem Physiol B 159:49–56

    Article  PubMed  Google Scholar 

  • Kim S, Moustaid-Moussa N (2000) Secretory, endocrine and autocrine/paracrine function of the adipocyte. J Nutr 130:3110S–3115S

    CAS  PubMed  Google Scholar 

  • Kim HK, Della-Fera M, Lin J, Baile CA (2006) Docosahexaenoic acid inhibits adipocyte differentiation and induces apoptosis in 3T3-L1 preadipocytes. J Nutr 136:2965–2969

    CAS  PubMed  Google Scholar 

  • Kjær MA, Todorčević M, Torstensen BE, Vegusdal A, Ruyter B (2008) Dietary n-3 HUFA affects mitochondrial fatty acid β-oxidation capacity and susceptibility to oxidative stress in Atlantic Salmon. Lipids 43:813–827

    Article  PubMed  Google Scholar 

  • Kunesová M, Braunerová R, Hlavatý P, Tvrzická E, Stanková B, Skrha J, Hilgertová J, Hill M, Kopecký J, Wagenknecht M, Hainer V, Matoulek M, Parízková J, Zák A, Svacina S (2006) The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol Res 55:63–72

    PubMed  Google Scholar 

  • Lafontan M, Langin D (2009) Lipolysis and lipid mobilization in human adipose tissue. Prog Lipid Res 48:275–297

    Article  CAS  PubMed  Google Scholar 

  • Large V, Arner P (1998) Regulation of lipolysis in humans. Pathophysiological modulation in obesity, diabetes, and hyperlipidaemia. Diabetes Metab 24:409–418

    CAS  PubMed  Google Scholar 

  • Lass A, Zimmermann R, Oberer M, Zechner R (2011) Lipolysis a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res 50:14–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SM, Jeon IG, Lee JY (2002) Effects of digestible protein and lipid levels in practical diets on growth, protein utilization and body composition of juvenile rock fish (Sebastes schlegeli). Aquaculture 211:227–239

    Article  CAS  Google Scholar 

  • Lee MS, Kwun IS, Kim Y (2008) Eicosapentaenoic acid increases lipolysis through up-regulation of the lipolytic gene expression and down-regulation of the adipogenic gene expression in 3T3-L1 adipocytes. Genes Nutr 2:327–330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leibel RL, Edens NK, Fried SK (1989) Physiologic basis for the control of body fat distribution in humans. Annu Rev Nutr 9:417–443

    Article  CAS  PubMed  Google Scholar 

  • Lu RH, Liang XF, Wang M, Zhou Y, Bai XL, He Y (2012) The role of leptin in lipid metabolism in fatty degenerated hepatocytes of the grass carp Ctenopharyngodon idellus. Fish Physiol Biochem 38(6):1759–1774

    Google Scholar 

  • Luo J, Rizkalla SW, Vidal H, Oppert JM, Colas C, Boussairi A, Guerre-Millo M, Chapuis AS, Chevalier A, Durand G, Slama G (1998) Moderate Intake of n-3 Fatty Acids for 2 Months Has No Detrimental Effect on Glucose Metabolism and Could Ameliorate the Lipid Profile in Type 2 Diabetic Men: results of a controlled study. Diabetes Care 21:717–724

    Article  CAS  PubMed  Google Scholar 

  • Manickam E, Sinclair A, Cameron-Smith D (2010) Suppressive actions of eicosapentaenoic acid on lipid droplet formation in 3T3-L1 adipocytes. Lipids Health Dis 9:57

    Article  PubMed Central  PubMed  Google Scholar 

  • Miyoshi H, Souza SC, Zhang HH, Strissel KJ, Christoffolete MA, Kovsan J, Rudich A, Kraemer FB, Bianco AC, Obin MS, Greenberg AS (2006) Perilipin promotes hormone-sensitive lipase-mediated adipocyte lipolysis via phosphorylation-dependent and -independent mechanisms. J Biol Chem 281:15837–15844

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi H, Perfield JW, Obin MS, Greenberg AS (2008) Adipose triglyceride lipase regulates basal lipolysis and lipid droplet size in adipocytes. J Cell Biochem 105:1430–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murata M, Kaji H, Takahashi Y, Iida K, Mizuno I, Okimura Y, Abe H, Chihara K (2000) Stimulation by eicosapentaenoic acids of leptin mRNA expression and its secretion in mouse 3T3-L1 adipocytes in vitro. Biochem Biophys Res Commun 270:343–348

    Article  CAS  PubMed  Google Scholar 

  • O’Connell J, Lynch L, Cawood TJ, Kwasnik A, Nolan N, Geoghegan J, McCormick A, O’Farrelly C, O’Shea D (2010) The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLoS ONE 5:e9997

    Article  PubMed Central  PubMed  Google Scholar 

  • Ogasawara J, Nomura S, Rahman N, Sakurai T, Kizaki T, Izawa T, Ishida H, Haga S, Ohno H (2010) Hormone-sensitive lipase is critical mediators of acute exercise-induced regulation of lipolysis in rat adipocytes. Biochem Biophys Res Commun 400:134–139

    Article  CAS  PubMed  Google Scholar 

  • Ogasawara J, Sakurai T, Kizaki T, Ishibashi Y, Izawa T, Sumitani Y, Ishida H, Radak Z, Haga S, Ohno H (2012) Higher levels of ATGL are associated with exercise-induced enhancement of lipolysis in rat epididymal adipocytes. PLoS ONE 7:e40876

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oku H, Tokuda M, Okumura T, Umino T (2006) Effects of insulin, triiodothyronine and fat soluble vitamins on adipocyte differentiation and LPL gene expression in the stromal-vascular cells of red sea bream, Pagrus major. Comp Biochem Physiol B 144:326–333

    Article  PubMed  Google Scholar 

  • Om AD, Umino T, Nakagawa H, Sasaki T, Okada K, Asano M, Nakagawa A (2001) The effects of dietary EPA and DHA fortification on lipolysis activity and physiological function in juvenile black sea bream Acanthopagrus schlegeli (Bleeker). Aquac Res 32:255–262

    Article  CAS  Google Scholar 

  • Pérez-Matute P, Marti A, Martínez JA, Fernández-Otero MP, Stanhope KL, Havel PJ, Moreno-Aliaga MJ (2005) Eicosapentaenoic fatty acid increases leptin secretion from primary cultured rat adipocytes: role of glucose metabolism. Am J Physiol Regul Integr Comp Physiol 288:R1682–R1688

    Article  PubMed  Google Scholar 

  • Raclot T (2003) Selective mobilization of fatty acids from adipose tissue triacylglycerols. Prog Lipid Res 42:257–288

    Article  CAS  PubMed  Google Scholar 

  • Reseland JE, Haugen F, Hollung K, Solvoll K, Halvorsen B, Brude IR, Nenseter MS, Christiansen EN, Drevon CA (2001) Reduction of leptin gene expression by dietary polyunsaturated fatty acids. J Lipid Res 42:743–750

    CAS  PubMed  Google Scholar 

  • Ronti T, Lupattelli G, Mannarino E (2006) The endocrine function of adipose tissue: an update. Clin Endocrinol 64:355–365

    CAS  Google Scholar 

  • Ruzickova J, Rossmeisl M, Prazak T, Flachs P, Sponarova J, Veck M, Tvrzicka E, Bryhn M, Kopecky J (2004) Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids 39:1177–1185

    Article  CAS  PubMed  Google Scholar 

  • Rydén M, Arvidsson E, Blomqvist L, Perbeck L, Dicker A, Arner P (2004) Targets for TNF-α-induced lipolysis in human adipocytes. Biochem Biophys Res Commun 318:168–175

    Article  PubMed  Google Scholar 

  • Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish Nutrition, 3rd edn. Academic Press, San Diego, pp 181–257

    Google Scholar 

  • Smith U (1971) Effect of cell size on lipid synthesis by human adipose tissue in vitro. J Lipid Res 12:65–70

    CAS  PubMed  Google Scholar 

  • Souza SC, Palmer HJ, Kang YH, Yamamoto MT, Muliro KV, Eric Paulson K, Greenberg AS (2003) TNF-α induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes. J Cell Biochem 89:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Stowell SL, Gatlin DM (1992) Effects of dietary pantethine and lipid levels on growth and body composition of channel cat fish, Ictalurus-punctatus. Aquaculture 108:177–188

    Article  CAS  Google Scholar 

  • Szentandrássy N, Pérez-Bido MR, Alonzo E, Negretti N, O’Neill SC (2007) Protein kinase A is activated by the n-3 polyunsaturated fatty acid eicosapentaenoic acid in rat ventricular muscle. J Physiol 582:349–358

    Article  PubMed Central  PubMed  Google Scholar 

  • Tai CC, Ding ST (2010) N-3 polyunsaturated fatty acids regulate lipid metabolism through several inflammation mediators: mechanisms and implications for obesity prevention. J Nutr Biochem 21:357–363

    Article  CAS  PubMed  Google Scholar 

  • Tansey JT, Huml AM, Vogt R, Davis KE, Jones JM, Fraser KA, Brasaemle DL, Kimmel AR, Londos C (2003) Functional studies on native and mutated forms of perilipins: a role in protein kinase A-mediated lipolysis of triacylglycerols in Chinese hamster ovary cells. J Biol Chem 278:8401–8406

    Article  CAS  PubMed  Google Scholar 

  • Todorčević M, Kjær MA, Djaković N, Vegusdal A, Torstensen BE, Ruyter B (2009) N-3 HUFAs affect fat deposition, susceptibility to oxidative stress, and apoptosis in Atlantic salmon visceral adipose tissue. Comp Biochem Physiol B 152:135–143

    PubMed  Google Scholar 

  • Todorčević M, Škugor S, Ruyter B (2010) Alterations in oxidative stress status modulate terminal differentiation in Atlantic salmon adipocytes cultivated in media rich in n-3 fatty acids. Comp Biochem Physiol B 156:309–318

    PubMed  Google Scholar 

  • Tsujita T, Morimoto C, Okuda H (1995) Mechanism of increase in basal lipolysis of enlarged adipocytes in obese animals. Obes Res 3:633S–636S

    Article  CAS  PubMed  Google Scholar 

  • Vegusdal A, Sundvold H, Gjøen T, Ruyter B (2003) An in vitro method for studying the proliferation and differentiation of Atlantic salmon preadipocytes. Lipids 38:289–296

    Article  CAS  PubMed  Google Scholar 

  • Vianen GJ, Obels PP, van den Thillart GEEJM, Zaagsma J (2002) β-Adrenoceptors mediate inhibition of lipolysis in adipocytes of tilapia (Oreochromis mossambicus). Am J Physiol Endocrinol Metab 282:E318–E325

    CAS  PubMed  Google Scholar 

  • Walther TC, Farese RV (2009) The life of lipid droplets. Biochim Biophys Acta 1791:459–466

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang YC, Kuo WH, Chen CY, Lin HY, Wu HT, Liu BH, Chen CH, Mersmann HJ, Chang KJ, Ding ST (2010) Docosahexaenoic acid regulates serum amyloid A protein to promote lipolysis through down regulation of perilipin. J Nutr Biochem 21:317–324

    Article  CAS  PubMed  Google Scholar 

  • Wang XX, Huang M, Wang Y (2012) The effect of insulin, TNFα and DHA on the proliferation, differentiation and lipolysis of preadipocytes isolated from large yellow croaker (Pseudosciaena Crocea R.). PLoS ONE 7:e48069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Watanabe T (2002) Strategies for further development of aquatic feeds. Fish Sci 68:242–252

    Article  CAS  Google Scholar 

  • Wueest S, Rapold RA, Rytka JM, Schoenle EJ, Konrad D (2009) Basal lipolysis, not the degree of insulin resistance, differentiates large from small isolated adipocytes in high-fat fed mice. Diabetologia 52:541–546

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi T, Omatsu N, Morimoto E, Nakashima H, Ueno K (2007) CGI-58 facilitates lipolysis on lipid droplets but is not involved in the vesiculation of lipid droplets caused by hormonal stimulation. J Lipid Res 48:1078–1089

    Article  CAS  PubMed  Google Scholar 

  • Zhang HH, Halbleib M, Ahmad F, Manganiello VC, Greenberg AS (2002) Tumor necrosis factor-α stimulates lipolysis in differentiated human adipocytes through activation of extracellular signal-related kinase and elevation of intracellular cAMP. Diabetes 51:2929–2935

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann R, Strauss JG, Haemmerle G, Schoiswohl G, Birner-Gruenberger R, Riederer M, Lass A, Neuberger G, Eisenhaber F, Hermetter A, Zechner R (2004) Fat mobilization in adipose tissue Is promoted by adipose triglyceride lipase. Science 306:1383–1386

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Nature Science Foundation of China (NSFC, Grant Number: 31072223).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Ji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Li, C., Huang, J. et al. Regulation of adipocytes lipolysis by n-3 HUFA in grass carp (Ctenopharyngodon idellus) in vitro and in vivo. Fish Physiol Biochem 40, 1447–1460 (2014). https://doi.org/10.1007/s10695-014-9939-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-014-9939-2

Keywords

Navigation