Skip to main content

Advertisement

Log in

Mutations in context: implications of BRCA testing in diverse populations

  • Original Article
  • Published:
Familial Cancer Aims and scope Submit manuscript

Abstract

Cancer is a common non-communicable disease worldwide, although it exhibits differential population trends in incidence and mortality rates. The differences relate to population structure, environmental risk factors as well as health system organization. This article discusses the potential impact of genetic testing on population health, focusing in particular on the mutational spectrum of breast cancer susceptibility genes in diverse populations. We identify the need for improved access to, and increased investment in, comprehensive cancer risk assessment and genetic testing as well as cancer control measures that take into account lifestyle, environmental, and social factors in understudied minority groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO (2014) Global status report on noncommunicable diseases 2014. World Health. doi: ISBN 9789241564854

  2. Skol AD, Sasaki MM, Onel K (2016) The genetics of breast cancer risk in the post-genome era: thoughts on study design to move past BRCA and towards clinical relevance. Breast Cancer Res 18:99. doi: 10.1186/s13058-016-0759-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795. doi: 10.1056/NEJMp1500523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mardis ER (2008) Next-generation DNA sequencing methods. Annu Rev Genom Hum Genet 9:387–402. doi: 10.1146/annurev.genom.9.081307.164359

    Article  CAS  Google Scholar 

  5. Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141. doi: 10.1016/j.tig.2007.12.007

    Article  CAS  PubMed  Google Scholar 

  6. Royal CD, Novembre J, Fullerton SM et al (2010) Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet 86:661–673. doi: 10.1016/j.ajhg.2010.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hall JM, Lee MK, Newman B et al (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689. doi: 10.1126/science.2270482

    Article  CAS  PubMed  Google Scholar 

  8. Wooster R, Neuhausen S, Mangion J et al (1994) Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265:2088–2090. doi: 10.1126/science.8091231

    Article  CAS  PubMed  Google Scholar 

  9. Pal T, Bonner D, Cragun D et al (2015) A high frequency of BRCA mutations in young black women with breast cancer residing in Florida. Cancer 121:4173–4180. doi: 10.1002/cncr.29645

    Article  CAS  PubMed  Google Scholar 

  10. Milne RL, Antoniou AC (2016) Modifiers of breast and ovarian cancer risks for BRCA1 and BRCA2 mutation carriers. Endocr Relat Cancer 23:T69–T84. doi: 10.1530/ERC-16-0277

    Article  CAS  PubMed  Google Scholar 

  11. Kuchenbaecker KB, Hopper JL, Barnes DR et al (2017) Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 317:2402. doi: 10.1001/jama.2017.7112

    Article  CAS  PubMed  Google Scholar 

  12. Petrucelli N, Daly MB, Feldman GL (2013) BRCA1 and BRCA2 Hereditary Breast and Ovarian Cancer

  13. Robertson L, Hanson H, Seal S et al (2012) BRCA1 testing should be offered to individuals with triple-negative breast cancer diagnosed below 50 years. Br J Cancer 106:1234–1238. doi: 10.1038/bjc.2012.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahfoudh W, Bouaouina N, Ahmed S, Ben et al (2012) Hereditary breast cancer in Middle Eastern and North African (MENA) populations: identification of novel, recurrent and founder BRCA1 mutations in the Tunisian population. Mol Biol Rep 39:1037–1046. doi: 10.1007/s11033-011-0829-8

    Article  CAS  PubMed  Google Scholar 

  15. Janavičius R (2010) Founder BRCA1/2 mutations in the Europe: Implications for hereditary breast-ovarian cancer prevention and control. EPMA J 1:397–412. doi: 10.1007/s13167-010-0037-y

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ashton-Prolla P, Vargas FR (2014) Prevalence and impact of founder mutations in hereditary breast cancer in Latin America. Genet Mol Biol 37:234–240. doi: 10.1590/S1415-47572014000200009

    Article  CAS  PubMed  Google Scholar 

  17. Wong-Brown MW, Meldrum CJ, Carpenter JE et al (2015) Prevalence of BRCA1 and BRCA2 germline mutations in patients with triple-negative breast cancer. Breast Cancer Res Treat 150:71–80. doi: 10.1007/s10549-015-3293-7

    Article  CAS  PubMed  Google Scholar 

  18. Shanmughapriya S, Nachiappan V, Natarajaseenivasan K (2013) BRCA1 and BRCA2 mutations in the ovarian cancer population across race and ethnicity: special reference to Asia. Oncology 84:226–232. doi: 10.1159/000346593

    Article  CAS  PubMed  Google Scholar 

  19. Struewing J, Abeliovich D, Peretz T et al (1995) The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet 11:198–200. doi: 10.1038/ng1096-188

    Article  CAS  PubMed  Google Scholar 

  20. Struewing JP, Hartge P, Wacholder S et al (1997) The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336:1401–1408. doi: 10.1056/NEJM199705153362001

    Article  CAS  PubMed  Google Scholar 

  21. Ewald IP, Izetti P, Vargas FR et al (2011) Prevalence of the BRCA1 founder mutation c.5266dupin Brazilian individuals at-risk for the hereditary breast and ovarian cancer syndrome. Hered Cancer Clin Pract 9:12. doi: 10.1186/1897-4287-9-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dillenburg CV, Bandeira IC, Tubino TV et al (2012) Prevalence of 185delAG and 5382insC mutations in BRCA1, and 6174delT in BRCA2 in women of Ashkenazi Jewish origin in southern Brazil. Genet Mol Biol 35:599–602. doi: 10.1590/S1415-47572012000400009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. John EM, Miron A, Gong G et al (2007) Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 298:2869–2876. doi: 10.1016/S0084-3954(08)79042-0

    Article  CAS  PubMed  Google Scholar 

  24. Weitzel JN, Lagos V, Blazer KR et al (2005) Prevalence of BRCA mutations and founder effect in high-risk Hispanic families. Cancer Epidemiol Biomarkers Prev 14:1666–1671. doi: 10.1158/1055-9965.EPI-05-0072

    Article  CAS  PubMed  Google Scholar 

  25. Hamel N, Feng B-J, Foretova L et al (2011) On the origin and diffusion of BRCA1 c.5266dupC (5382insC) in European populations. Eur J Hum Genet 19:300–306. doi: 10.1038/ejhg.2010.203

    Article  PubMed  Google Scholar 

  26. Bar-Sade RB, Kruglikova a, Modan B et al (1998) The 185delAG BRCA1 mutation originated before the dispersion of Jews in the diaspora and is not limited to Ashkenazim. Hum Mol Genet 7:801–805. doi: 10.1093/hmg/7.5.801

    Article  CAS  PubMed  Google Scholar 

  27. Kehdy FSG, Gouveia MH, Machado M et al (2015) Origin and dynamics of admixture in Brazilians and its effect on the pattern of deleterious mutations. Proc Natl Acad Sci USA 112:8696–8701. doi: 10.1073/pnas.1504447112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Felix GES, Abe-Sandes K, Bonfim TM et al (2010) Ancestry informative markers and complete blood count parameters in Brazilian blood donors. Rev Bras Hematol Hemoter 32:282–285. doi: 10.1590/S1516-84842010005000074

    Article  Google Scholar 

  29. Lima-Costa MF, Rodrigues LC, Barreto ML et al (2015) Genomic ancestry and ethnoracial self-classification based on 5,871 community-dwelling Brazilians (The Epigen Initiative). Sci Rep 5:9812. doi: 10.1038/srep09812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Santos NPC, Ribeiro-Rodrigues EM, Ribeiro-Dos-Santos AKC et al (2010) Assessing individual interethnic admixture and population substructure using a 48-insertion-deletion (INSEL) ancestry-informative marker (AIM) panel. Hum Mutat 31:184–190. doi: 10.1002/humu.21159

    Article  CAS  PubMed  Google Scholar 

  31. Parra FC, Amado RC, Lambertucci JR et al (2003) Color and genomic ancestry in Brazilians. Proc Natl Acad Sci USA 100:177–182. doi: 10.1073/pnas.0126614100

    Article  CAS  PubMed  Google Scholar 

  32. IBGE (2007) IBGE | Memória | publicações | Brasil: 500 anos de povoamento. http://memoria.ibge.gov.br/publicacoes/brasil-500-anos-de-povoamento.html. Accessed 9 May 2016

  33. Dufloth RM, Carvalho S, Heinrich JK et al (2005) Analysis of BRCA1 and BRCA2 mutations in Brazilian breast cancer patients with positive family history. Sao Paulo Med J 123:192–197. doi: 10.1590/S1516-31802005000400007

    Article  PubMed  Google Scholar 

  34. Felix GE, Abe-Sandes C, Machado-Lopes TM et al (2014) Germline mutations in BRCA1, BRCA2, CHEK2 and TP53 in patients at high-risk for HBOC: characterizing a Northeast Brazilian Population. Hum Genome Var 1:14012. doi: 10.1038/hgv.2014.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Esteves VF, Thuler LCS, Amêndola LC et al (2009) Prevalence of BRCA1 and BRCA2 gene mutations in families with medium and high risk of breast and ovarian cancer in Brazil. Braz J Med Biol Res 42:453–457. doi: 10.1590/S0100-879X2009000500009

    Article  CAS  PubMed  Google Scholar 

  36. Gomes MCB, Costa MM, Borojevic R et al (2007) Prevalence of BRCA1 and BRCA2 mutations in breast cancer patients from Brazil. Breast Cancer Res Treat 103:349–353. doi: 10.1007/s10549-006-9378-6

    Article  CAS  PubMed  Google Scholar 

  37. Silva FC, Lisboa BC, Figueiredo MC et al (2014) Hereditary breast and ovarian cancer: assessment of point mutations and copy number variations in Brazilian patients. BMC Med Genet 15:55. doi: 10.1186/1471-2350-15-55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. da Costa ECB, Vargas FR, Moreira AS et al (2008) Founder effect of the BRCA1 5382insC mutation in Brazilian patients with hereditary breast ovary cancer syndrome. Cancer Genet Cytogenet 184:62–66. doi: 10.1016/j.cancergencyto.2008.03.011

    Article  CAS  PubMed  Google Scholar 

  39. Gao Q, Neuhausen S, Cummings S et al (1997) Recurrent germ-line BRCA1 mutations in extended African American families with early-onset breast cancer. Am J Hum Genet 60:1233–1236

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Nanda R, Schumm LP, Cummings S et al (2005) Genetic testing in an ethnically diverse cohort of high-risk women: a comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA 294:1925–1933. doi: 10.1001/jama.294.15.1925

    Article  CAS  PubMed  Google Scholar 

  41. Fackenthal JD, Zhang J, Zhang B et al (2012) High prevalence of BRCA1 and BRCA2 mutations in unselected Nigerian breast cancer patients. Int J cancer 131:1114–1123. doi: 10.1002/ijc.27326

    Article  CAS  PubMed  Google Scholar 

  42. Donenberg T, Lunn J, Turnquest T et al (2009) High frequency of BRCA1 founder mutations in the Bahamas. Cancer Res 69:4078–4078. doi: 10.1158/0008-5472.SABCS-09-4078

    Article  Google Scholar 

  43. Donenberg T, Lunn J, Curling D et al (2011) A high prevalence of BRCA1 mutations among breast cancer patients from the Bahamas. Breast Cancer Res Treat 125:591–596. doi: 10.1007/s10549-010-1156-9

    Article  PubMed  Google Scholar 

  44. Akbari M, Donenberg T, Lunn J et al (2014) The spectrum of BRCA1 and BRCA2 mutations in breast cancer patients in the Bahamas. Clin Genet 85:64–67. doi: 10.1111/cge.12132

    Article  CAS  PubMed  Google Scholar 

  45. Donenberg T, Ahmed H, Royer R et al (2016) A Survey of BRCA1, BRCA2, and PALB2 mutations in women with breast cancer in Trinidad and Tobago. Breast Cancer Res Treat 159:131–138. doi: 10.1007/s10549-016-3870-4

    Article  CAS  PubMed  Google Scholar 

  46. Hernández JEL, Llacuachaqui M, Palacio GV et al (2014) Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Medellín, Colombia. Hered Cancer Clin Pract 12:11. doi: 10.1186/1897-4287-12-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Torres D, Rashid MU, Gil F et al (2007) High proportion of BRCA1/2 founder mutations in Hispanic breast/ovarian cancer families from Colombia. Breast Cancer Res Treat 103:225–232. doi: 10.1007/s10549-006-9370-1

    Article  CAS  PubMed  Google Scholar 

  48. Torres D, Bermejo JL, Rashid MU et al (2017) Prevalence and penetrance of BRCA1 and BRCA2 germline mutations in Colombian breast cancer patients. Sci Rep 7:4713. doi: 10.1038/s41598-017-05056-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hall MJ, Reid JE, Burbidge LA et al (2009) BRCA1 and BRCA2 mutations in women of different ethnicities undergoing testing for hereditary breast-ovarian cancer. Cancer 115:2222–2233. doi: 10.1002/cncr.24200

    Article  CAS  PubMed  Google Scholar 

  50. Dryja TP, Rapaport JM, Joyce JM, Petersen RA (1986) Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci USA 83:7391–7394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Friend SH, Bernards R, Rogelj S et al (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643–646. doi: 10.1038/323643a0

    Article  CAS  PubMed  Google Scholar 

  52. Fung YK, Murphree AL, T’Ang A et al (1987) Structural evidence for the authenticity of the human retinoblastoma gene. Science 236:1657–1661

    Article  CAS  PubMed  Google Scholar 

  53. Lee WH, Bookstein R, Hong F et al (1987) Human retinoblastoma susceptibility gene: cloning, identification, and sequence. Science 235:1394–1399

    Article  CAS  PubMed  Google Scholar 

  54. Kress M, May E, Cassingena R, May P (1979) Simian virus 40-transformed cells express new species of proteins precipitable by anti-simian virus 40 tumor serum. J Virol 31:472–483

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lane DP, Crawford LV (1979) T antigen is bound to a host protein in SV40-transformed cells. Nature 278:261–263

    Article  CAS  PubMed  Google Scholar 

  56. Linzer DI, Levine AJ (1979) Characterization of a 54K dalton cellular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17:43–52

    Article  CAS  PubMed  Google Scholar 

  57. Bodmer WF, Bailey CJ, Bodmer J et al. Localization of the gene for familial adenomatous polyposis on chromosome 5. Nature 328:614–616. doi: 10.1038/328614a0

    Article  CAS  PubMed  Google Scholar 

  58. Leppert M, Dobbs M, Scambler P et al (1987) The gene for familial polyposis coli maps to the long arm of chromosome 5. Science 238:1411–1413

    Article  CAS  PubMed  Google Scholar 

  59. Lindblom A, Tannergård P, Werelius B, Nordenskjöld M (1993) Genetic mapping of a second locus predisposing to hereditary non-polyposis colon cancer. Nat Genet 5:279–282. doi: 10.1038/ng1193-279

    Article  CAS  PubMed  Google Scholar 

  60. Fishel R, Lescoe MK, Rao MR et al (1993) The human mutator gene homolog MSH2 and its association with hereditary nonpolyposis colon cancer. Cell 75:1027–1038

    Article  CAS  PubMed  Google Scholar 

  61. Leach FS, Nicolaides NC, Papadopoulos N et al (1993) Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer. Cell 75:1215–1225

    Article  CAS  PubMed  Google Scholar 

  62. Bronner CE, Baker SM, Morrison PT et al (1994) Mutation in the DNA mismatch repair gene homologue hMLH1 is associated with hereditary non-polyposis colon cancer. Nature 368:258–261. doi: 10.1038/368258a0

    Article  CAS  PubMed  Google Scholar 

  63. Papadopoulos N, Nicolaides NC, Wei YF et al (1994) Mutation of a mutL homolog in hereditary colon cancer. Science 263:1625–1629

    Article  CAS  PubMed  Google Scholar 

  64. Cannon-Albright LA, Goldgar DE, Meyer LJ et al (1992) Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science 258:1148–1152

    Article  CAS  PubMed  Google Scholar 

  65. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707. doi: 10.1038/366704a0

    Article  CAS  PubMed  Google Scholar 

  66. Kamb A, Shattuck-Eidens D, Eeles R et al (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 8:23–26. doi: 10.1038/ng0994-22

    Article  CAS  PubMed  Google Scholar 

  67. Kamb A, Gruis NA, Weaver-Feldhaus J et al (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440

    Article  CAS  PubMed  Google Scholar 

  68. Berx G, Staes K, van Hengel J et al (1995) Cloning and characterization of the human invasion suppressor gene E-cadherin (CDH1). Genomics 26:281–289

    Article  CAS  PubMed  Google Scholar 

  69. Chen LZ, Harris PC, Apostolou S et al (1991) A refined physical map of the long arm of human chromosome 16. Genomics 10:308–312

    Article  CAS  PubMed  Google Scholar 

  70. Walsh T, Lee MK, Casadei S et al (2010) Detection of inherited mutations for breast and ovarian cancer using genomic capture and massively parallel sequencing. Proc Natl Acad Sci USA 107:12629–12633. doi: 10.1073/pnas.1007983107

    Article  PubMed  PubMed Central  Google Scholar 

  71. Churpek JE, Walsh T, Zheng Y et al (2014) Inherited predisposition to breast cancer among African American women. Breast Cancer Res Treat. doi: 10.1007/s10549-014-3195-0

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cybulski C, Wokołorczyk D, Huzarski T et al (2007) A deletion in CHEK2 of 5,395 bp predisposes to breast cancer in Poland. Breast Cancer Res Treat 102:119–122. doi: 10.1007/s10549-006-9320-y

    Article  CAS  PubMed  Google Scholar 

  73. Cybulski C, Górski B, Huzarski T et al (2004) CHEK2 is a multiorgan cancer susceptibility gene. Am J Hum Genet 75:1131–1135. doi: 10.1086/426403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meijers-Heijboer H, van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31:55–59. doi: 10.1038/ng879

    Article  CAS  PubMed  Google Scholar 

  75. Friedrichsen DM, Malone KE, Doody DR et al (2004) Frequency of CHEK2 mutations in a population based, case-control study of breast cancer in young women. Breast Cancer Res 6:R629-35. doi: 10.1186/bcr933

    Article  CAS  PubMed  Google Scholar 

  76. Mateus Pereira LH, Sigurdson AJ, Doody MM et al (2004) CHEK2:1100delC and female breast cancer in the United States. Int J cancer 112:541–543. doi: 10.1002/ijc.20439

    Article  CAS  PubMed  Google Scholar 

  77. Easton DF, Pharoah PDP, Antoniou AC et al. (2015) Gene-panel sequencing and the prediction of breast-cancer risk. 23:2243–2257

  78. King M-C, Levy-Lahad E, Lahad A et al (2014) Population-Based Screening for BRCA1 and BRCA2. JAMA 312:1091. doi: 10.1001/jama.2014.12483

    Article  CAS  PubMed  Google Scholar 

  79. Clarke CA, Keegan THM, Yang J et al (2012) Age-specific incidence of breast cancer subtypes: understanding the black-white crossover. J Natl Cancer Inst 104:1094–1101. doi: 10.1093/jnci/djs264

    Article  PubMed  PubMed Central  Google Scholar 

  80. Huo D, Ikpatt F, Khramtsov A et al (2009) Population differences in breast cancer: survey in indigenous African women reveals over-representation of triple-negative breast cancer. J Clin Oncol 27:4515–4521. doi: 10.1200/JCO.2008.19.6873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Huo D, Hu H, Rhie SK et al (2017) Comparison of breast cancer molecular features and survival by African and European Ancestry in the cancer genome atlas. JAMA Oncol. doi: 10.1001/jamaoncol.2017.0595

    Article  PubMed  PubMed Central  Google Scholar 

  82. Adeniji KA, Huo D, Khramtsov A et al. (2010) Molecular profiles of breast cancer in Ilorin, Nigeria. J Clin Oncol 28:1602

    Article  Google Scholar 

  83. Kurebayashi J, Moriya T, Ishida T et al. (2007) The prevalence of intrinsic subtypes and prognosis in breast cancer patients of different races. Breast 16:S72–S77

    Article  PubMed  Google Scholar 

  84. Sorlie T, Tibshirani R, Parker J et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423. doi: 10.1073/pnas.0932692100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Grushko TA, Blackwood MA, Schumm PL et al (2002) Molecular-cytogenetic analysis of HER-2/neu gene in BRCA1-associated breast cancers. Cancer Res 62:1481–1488

    CAS  PubMed  Google Scholar 

  86. Lee E, McKean-Cowdin R, Ma H et al (2011) Characteristics of triple-negative breast cancer in patients with a BRCA1 Mutation: results from a population-based study of young women. J Clin Oncol 29:4373–4380. doi: 10.1200/JCO.2010.33.6446

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mavaddat N, Barrowdale D, Andrulis IL et al (2012) Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: results from the consortium of investigators of modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol Biomarkers Prev 21:134–147. doi: 10.1158/1055-9965.EPI-11-0775

    Article  CAS  PubMed  Google Scholar 

  88. Tung N, Lin NU, Kidd J et al (2016) Frequency of germline mutations in 25 cancer susceptibility genes in a sequential series of patients with breast cancer. J Clin Oncol 34:1460–1468. doi: 10.1200/JCO.2015.65.0747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Huo D, Senie RT, Daly M et al (2009) Prediction of BRCA mutations using the BRCAPRO model in clinic-based African American, Hispanic, and other minority families in the United States. J Clin Oncol 27:1184–1190. doi: 10.1200/JCO.2008.17.5869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fischer C, Kuchenbäcker K, Engel C et al (2013) Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium. J Med Genet 50:360–367. doi: 10.1136/jmedgenet-2012-101415

    Article  CAS  PubMed  Google Scholar 

  91. J. C EM, C S-C, G. P (2014) Recent BRCAPRO upgrades significantly improve calibration. Cancer Epidemiol Biomarkers Prev 23:1689–1695. doi: 10.1158/1055-9965.EPI-13-1364

    Article  Google Scholar 

  92. Kurian AW, Gong GD, John EM et al (2009) Performance of prediction models for BRCA mutation carriage in three racial/ethnic groups: findings from the Northern California Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev 18:1084–1091. doi: 10.1158/1055-9965.EPI-08-1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hall MJ, Olopade OI (2006) Disparities in genetic testing: thinking outside the BRCA box. J Clin Oncol 24:2197–2203. doi: 10.1200/JCO.2006.05.5889

    Article  PubMed  Google Scholar 

  94. Hall M, Olopade OI (2005) Confronting genetic testing disparities: knowledge is power. JAMA 293:1783–1785. doi: 10.1001/jama.293.14.1783

    Article  CAS  PubMed  Google Scholar 

  95. Knudson a G (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1:157–162. doi: 10.1038/35101031

    Article  CAS  PubMed  Google Scholar 

  96. King M-C (2013) Evidence is evidence: an interview with Mary-Claire King. Interviewed by Jane Gitschier. PLoS Genet 9:e1003828. doi: 10.1371/journal.pgen.1003828

    Article  CAS  PubMed  Google Scholar 

  97. Harford JB (2011) Breast-cancer early detection in low-income and middle-income countries: do what you can versus one size fits all. Lancet Oncol 12:306–312. doi: 10.1016/S1470-2045(10)70273-4

    Article  PubMed  Google Scholar 

  98. Guindalini Rodrigo Santa Cruz, Huang Yi-Ching, Obeid Elias, Patrick-Miller Linda, Bradbury Angela R., Marion S, Verp, Susan Hong, Kristen Wroblewski, Hiroyuki Abe, Greg S. Karczmar, (2013) Gillian Newstead OIO Breast cancer surveillance in high-risk women with magnetic resonance imaging every 6 months. | 2013 ASCO Annual Meeting | Abstracts | Meeting Library. J Clin Oncol 31, (suppl; abstr 1506). http://meetinglibrary.asco.org/content/114172-132. Accessed 30 Dec 2015

  99. Lancet T (2013) The failure of cancer medicine?. Lancet (Lond Engl) 381:423. doi: 10.1016/S0140-6736(13)60228-7

    Article  Google Scholar 

  100. Daly B, Olopade OI (2015) A perfect storm: How tumor biology, genomics, and health care delivery patterns collide to create a racial survival disparity in breast cancer and proposed interventions for change. CA Cancer J Clin 65:221–238. doi: 10.3322/caac.21271

    Article  PubMed  Google Scholar 

  101. Ibrahim SS, Hafez EE, Hashishe MM (2010) Presymptomatic breast cancer in Egypt: role of BRCA1 and BRCA2 tumor suppressor genes mutations detection. J Exp Clin Cancer Res 29:82. doi: 10.1186/1756-9966-29-82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Zhang J, Fackenthal JD, Zheng Y et al (2012) Recurrent BRCA1 and BRCA2 mutations in breast cancer patients of African ancestry. Breast Cancer Res Treat 134:889–894. doi: 10.1007/s10549-012-2136-z

    Article  CAS  PubMed  Google Scholar 

  103. Reeves MD, Yawitch TM, van der Merwe NC et al (2004) BRCA1 mutations in South African breast and/or ovarian cancer families: Evidence of a novel founder mutation in Afrikaner families. Int J Cancer 110:677–682. doi: 10.1002/ijc.20186

    Article  CAS  PubMed  Google Scholar 

  104. Olopade OI, Fackenthal JD, Dunston G et al (2003) Breast cancer genetics in African Americans. Cancer 97:236–245. doi: 10.1002/cncr.11019

    Article  CAS  PubMed  Google Scholar 

  105. Pal T, Permuth-Wey J, Holtje T, Sutphen R (2004) BRCA1 and BRCA2 mutations in a study of African American breast cancer patients. Cancer Epidemiol Biomarkers Prev 13:1794–1799

    CAS  PubMed  Google Scholar 

  106. Solano AR, Aceto GM, Delettieres D et al (2012) BRCA1 And BRCA2 analysis of Argentinean breast/ovarian cancer patients selected for age and family history highlights a role for novel mutations of putative south-American origin. Springerplus 1:20. doi: 10.1186/2193-1801-1-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Trottier M, Lunn J, Butler R et al (2016) Prevalence of founder mutations in the BRCA1 and BRCA2 genes among unaffected women from the Bahamas. Clin Genet 89:328–331. doi: 10.1111/cge.12602

    Article  CAS  PubMed  Google Scholar 

  108. Moreira MAM, Bobrovnitchaia IG, Lima MAFD et al (2012) Portuguese c.156_157insAlu BRCA2 founder mutation: gastrointestinal and tongue neoplasias may be part of the phenotype. Fam Cancer 11:657–660. doi: 10.1007/s10689-012-9551-5

    Article  CAS  PubMed  Google Scholar 

  109. Jara L, Ampuero S, Santibáñez E et al (2006) BRCA1 and BRCA2 mutations in a South American population. Cancer Genet Cytogenet 166:36–45. doi: 10.1016/j.cancergencyto.2005.08.019

    Article  CAS  PubMed  Google Scholar 

  110. Jara L, Ampuero S, Seccia L et al (2002) Frequency of the 185delAG mutation in the BRCA1 gene in Chilean healthy women with family history of breast cancer. Rev médica Chile 130:1113–1123

    Google Scholar 

  111. Gutiérrez Espeleta GA, Llacuachaqui M, García-Jiménez L et al (2012) BRCA1 and BRCA2 mutations among familial breast cancer patients from Costa Rica. Clin Genet 82:484–488. doi: 10.1111/j.1399-0004.2011.01774.x

    Article  CAS  PubMed  Google Scholar 

  112. Rodriguez RC, Esperon AA, Ropero R et al (2008) Prevalence of BRCA1 and BRCA2 mutations in breast cancer patients from Cuba. Fam Cancer 7:275–279. doi: 10.1007/s10689-008-9187-7

    Article  CAS  PubMed  Google Scholar 

  113. Tonin PN, Mes-Masson AM, Futreal PA et al (1998) Founder BRCA1 and BRCA2 mutations in French Canadian breast and ovarian cancer families. Am J Hum Genet 63:1341–1351. doi: 10.1086/302099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Villarreal-Garza C, Alvarez-Gómez RM, Pérez-Plasencia C et al (2015) Significant clinical impact of recurrent BRCA1 and BRCA2 mutations in Mexico. Cancer 121:372–378. doi: 10.1002/cncr.29058

    Article  CAS  PubMed  Google Scholar 

  115. Abugattas J, Llacuachaqui M, Allende YS et al (2015) Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Peru. Clin Genet 88:371–375. doi: 10.1111/cge.12505

    Article  CAS  PubMed  Google Scholar 

  116. Levy-Lahad E, Catane R, Eisenberg S et al (1997) Founder BRCA1 and BRCA2 mutations in Ashkenazi Jews in Israel: frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families. Am J Hum Genet 60:1059–1067

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Zhang J, Pei R, Pang Z et al (2012) Prevalence and characterization of BRCA1 and BRCA2 germline mutations in Chinese women with familial breast cancer. Breast Cancer Res Treat 132:421–428. doi: 10.1007/s10549-011-1596-x

    Article  CAS  PubMed  Google Scholar 

  118. Zhi X, Szabo C, Chopin S et al (2002) BRCA1 and BRCA2 sequence variants in Chinese breast cancer families. Hum Mutat 20:474. doi: 10.1002/humu.9083

    Article  PubMed  Google Scholar 

  119. Li W-F, Hu Z, Rao N-Y et al (2008) The prevalence of BRCA1 and BRCA2 germline mutations in high-risk breast cancer patients of Chinese Han nationality: two recurrent mutations were identified. Breast Cancer Res Treat 110:99–109. doi: 10.1007/s10549-007-9708-3

    Article  CAS  PubMed  Google Scholar 

  120. Hadjisavvas A, Charalambous E, Adamou A et al (2004) Hereditary breast and ovarian cancer in Cyprus: identification of a founder BRCA2 mutation. Cancer Genet Cytogenet 151:152–156. doi: 10.1016/j.cancergencyto.2003.09.020

    Article  CAS  PubMed  Google Scholar 

  121. Vaidyanathan K, Lakhotia S, Ravishankar HM et al (2009) BRCA1 and BRCA2 germline mutation analysis among Indian women from south India: identification of four novel mutations and high-frequency occurrence of 185delAG mutation. J Biosci 34:415–422

    Article  CAS  PubMed  Google Scholar 

  122. Saxena S, Szabo CI, Chopin S et al (2002) BRCA1 and BRCA2 in Indian breast cancer patients. Hum Mutat 20:473–474. doi: 10.1002/humu.9082

    Article  PubMed  Google Scholar 

  123. Sekine M, Nagata H, Tsuji S et al (2001) Mutational analysis of BRCA1 and BRCA2 and clinicopathologic analysis of ovarian cancer in 82 ovarian cancer families: two common founder mutations of BRCA1 in Japanese population. Clin Cancer Res 7:3144–3150

    CAS  PubMed  Google Scholar 

  124. Liede A, Malik IA, Aziz Z et al (2002) Contribution of BRCA1 and BRCA2 mutations to breast and ovarian cancer in Pakistan. Am J Hum Genet 71:595–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Laitman Y, Feng B-J, Zamir IM et al (2013) Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations. Eur J Hum Genet 21:212–216. doi: 10.1038/ejhg.2012.124

    Article  CAS  PubMed  Google Scholar 

  126. Bar-Sade RB, Kruglikova A, Modan B et al (1998) The 185delAG BRCA1 mutation originated before the dispersion of Jews in the diaspora and is not limited to Ashkenazim. Hum Mol Genet 7:801–805

    Article  CAS  PubMed  Google Scholar 

  127. Ginsburg O, Dinh N, To T et al (2011) Family history, BRCA mutations and breast cancer in Vietnamese women. Clin Genet 80:89–92. doi: 10.1111/j.1399-0004.2010.01545.x

    Article  CAS  PubMed  Google Scholar 

  128. Wagner TM, Möslinger RA, Muhr D et al (1998) BRCA1-related breast cancer in Austrian breast and ovarian cancer families: specific BRCA1 mutations and pathological characteristics. Int J cancer 77:354–360

    Article  CAS  PubMed  Google Scholar 

  129. Wagner T, Möslinger R, Muhr D et al (1997) Founding BRCA1 mutations in Austrian HBOC families. Eur J Cancer 33:S7. doi: 10.1016/S0959-8049(97)84398-5

    Article  Google Scholar 

  130. Peelen T, van Vliet M, Petrij-Bosch A et al (1997) A high proportion of novel mutations in BRCA1 with strong founder effects among Dutch and Belgian hereditary breast and ovarian cancer families. Am J Hum Genet 60:1041–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Claes K, Machackova E, De Vos M, et al (1999) Mutation analysis of the BRCA1 and BRCA2 genes in the Belgian patient population and identification of a Belgian founder mutation BRCA1 IVS5 + 3A>G. Dis Markers 15:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Zeegers MP, van Poppel F, Vlietinck R et al (2004) Founder mutations among the Dutch. Eur J Hum Genet 12:591–600. doi: 10.1038/sj.ejhg.5201151

    Article  CAS  PubMed  Google Scholar 

  133. Verhoog LC, van den Ouweland AM, Berns E et al (2001) Large regional differences in the frequency of distinct BRCA1/BRCA2 mutations in 517 Dutch breast and/or ovarian cancer families. Eur J Cancer 37:2082–2090. doi: 10.1016/s0959-8049(01)00244-1

    Article  CAS  PubMed  Google Scholar 

  134. Huusko P, Pääkkönen K, Launonen V et al (1998) Evidence of founder mutations in Finnish BRCA1 and BRCA2 families. Am J Hum Genet 62:1544–1548. doi: 10.1086/301880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Muller D, Bonaiti-Pellié C, Abecassis J et al (2004) BRCA1 testing in breast and/or ovarian cancer families from northeastern France identifies two common mutations with a founder effect. Fam Cancer 3:15–20. doi: 10.1023/B:FAME.0000026819.44213.df

    Article  CAS  PubMed  Google Scholar 

  136. Stoppa-Lyonnet D, Laurent-Puig P, Essioux L et al (1997) BRCA1 sequence variations in 160 individuals referred to a breast/ovarian family cancer clinic. Institut Curie Breast Cancer Group. Am J Hum Genet 60:1021–1030

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Van Der Looij M, Szabo C, Besznyak I et al (2000) Prevalence of founder BRCA1 and BRCA2 mutations among breast and ovarian cancer patients in Hungary. Int J cancer 86:737–740

    Article  Google Scholar 

  138. Thorlacius S, Sigurdsson S, Bjarnadottir H et al (1997) Study of a single BRCA2 mutation with high carrier frequency in a small population. Am J Hum Genet 60:1079–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Johannesdottir G, Gudmundsson J, Bergthorsson JT et al (1996) High prevalence of the 999del5 mutation in icelandic breast and ovarian cancer patients. Cancer Res 56:3663–3665

    CAS  PubMed  Google Scholar 

  140. Palomba G, Cossu A, Friedman E et al (2007) Origin and distribution of the BRCA2-8765delAG mutation in breast cancer. BMC Cancer 7:132. doi: 10.1186/1471-2407-7-132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Scottish/Northern Irish BRCAI/BRCA2 Consortium TSIB (2003) BRCA1 and BRCA2 mutations in Scotland and Northern Ireland. Br J Cancer 88:1256–1262. doi: 10.1038/sj.bjc.6600840

    Article  CAS  Google Scholar 

  142. Møller P, Heimdal K, Apold J et al (2001) Genetic epidemiology of BRCA1 mutations in Norway. Eur J Cancer 37:2428–2434. doi: 10.1016/S0959-8049(01)00299-4

    Article  PubMed  Google Scholar 

  143. Heimdal K, Maehle L, Apold J et al (2003) The Norwegian founder mutations in BRCA1: high penetrance confirmed in an incident cancer series and differences observed in the risk of ovarian cancer. Eur J Cancer 39:2205–2213. doi: 10.1016/s0959-8049(03)00548-3

    Article  CAS  PubMed  Google Scholar 

  144. Brozek I, Cybulska C, Ratajska M et al (2011) Prevalence of the most frequent BRCA1 mutations in Polish population. J Appl Genet 52:325–330. doi: 10.1007/s13353-011-0040-6

    Article  PubMed  PubMed Central  Google Scholar 

  145. Górski B, Byrski T, Huzarski T et al (2000) Founder mutations in the BRCA1 gene in Polish families with breast-ovarian cancer. Am J Hum Genet 66:1963–1968. doi: 10.1086/302922

    Article  PubMed  PubMed Central  Google Scholar 

  146. Machado PM, Brandao RD, Cavaco BM et al (2007) Screening for a BRCA2 rearrangement in high-risk breast/ovarian Cancer families: evidence for a founder effect and analysis of the associated phenotypes. J Clin Oncol 25:2027–2034. doi: 10.1200/JCO.2006.06.9443

    Article  CAS  PubMed  Google Scholar 

  147. Peixoto A, Santos C, Rocha P et al (2009) The c.156_157insAlu BRCA2 rearrangement accounts for more than one-fourth of deleterious BRCA mutations in northern/central Portugal. Breast Cancer Res Treat 114:31–38. doi: 10.1007/s10549-008-9978-4

    Article  CAS  PubMed  Google Scholar 

  148. Krylova N, Lobeiko OS, Sokolenko AP et al (2006) BRCA1 4153delA founder mutation in Russian ovarian cancer patients. Hered Cancer Clin Pract 4:193. doi: 10.1186/1897-4287-4-4-193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Pohlreich P, Zikan M, Stribrna J et al (2005) High proportion of recurrent germline mutations in the BRCA1 gene in breast and ovarian cancer patients from the Prague area. Breast Cancer Res 7:R728-36. doi: 10.1186/bcr1282

    Article  CAS  PubMed  Google Scholar 

  150. Krajc M, De Grève J, Goelen G, Teugels E (2002) BRCA2 founder mutation in Slovenian breast cancer families. Eur J Hum Genet 10:879–882. doi: 10.1038/sj.ejhg.5200886

    Article  CAS  PubMed  Google Scholar 

  151. Krajc M, Teugels E, Zgajnar J et al (2008) Five recurrent BRCA1/2 mutations are responsible for cancer predisposition in the majority of Slovenian breast cancer families. BMC Med Genet 9:83. doi: 10.1186/1471-2350-9-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vega A, Campos B, Bressac-De-Paillerets B et al (2001) The R71G BRCA1 is a founder Spanish mutation and leads to aberrant splicing of the transcript. Hum Mutat 17:520–521. doi: 10.1002/humu.1136

    Article  CAS  PubMed  Google Scholar 

  153. Blay P, Santamaría I, Pitiot AS et al (2013) Mutational analysis of BRCA1 and BRCA2 in hereditary breast and ovarian cancer families from Asturias (Northern Spain). BMC Cancer 13:243. doi: 10.1186/1471-2407-13-243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Bergman A, Einbeigi Z, Olofsson U et al (2001) The western Swedish BRCA1 founder mutation 3171ins5; a 3.7 cM conserved haplotype of today is a reminiscence of a 1500-year-old mutation. Eur J Hum Genet 9:787–793. doi: 10.1038/sj.ejhg.5200704

    Article  CAS  PubMed  Google Scholar 

  155. Bergman A, Flodin A, Engwall Y et al (2005) A high frequency of germline BRCA1/2 mutations in western Sweden detected with complementary screening techniques. Fam Cancer 4:89–96. doi: 10.1007/s10689-004-5812-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Elisabeth Sveen and Monica Palese for the review of this manuscript. This work was supported by Coordination for the Improvement of Higher Education Personnel (CAPES), Susan G. Komen for the Cure, and John and Editha Kapoor Charitable Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olufunmilayo I. Olopade.

Ethics declarations

Conflict of interest

OIO is a Co-Founder at CancerIQ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Felix, G.E.S., Zheng, Y. & Olopade, O.I. Mutations in context: implications of BRCA testing in diverse populations. Familial Cancer 17, 471–483 (2018). https://doi.org/10.1007/s10689-017-0038-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10689-017-0038-2

Keywords

Navigation