Skip to main content
Log in

Ectopic expression of the Vigna eylindrica ferritin gene enhanced heat tolerance in transgenic wheat (Triticum aestivum L.)

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

The Ferritins are the iron storage proteins which regulate intracellular iron content via the absorption and release of iron, and related to plant oxidative stress and pathogens. However, the possible role of FER in heat stress responses remains unknown. In this study, the black rice (Vigna eylindrica) ferritin gene, VeFER, was cloned and integrated into the genome of wheat cultivar ZY9507 via biolistic transformation. Expression analysis of T3 transgenic plants subjected to heat treatment showed significantly increased VeFER expression in the transgenic lines as compared to the untransformed plants. The MDA content of the transgenic lines was significantly lower than that in the cultivar. Further, the transgenic lines had similar relative electrical conductivities to the heat resistant variety TAM107, but were significantly lower than the untransformed control cultivar and the heat-sensitive variety CS. These results indicate that the VeFER gene plays a crucial role in improving the heat tolerance of transgenic wheat plants, likely by promoting the thermal stability of cell membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

VeFER :

Vigna eylindrica ferritin gene

ZY9507:

Zhongyou9507

CS:

Chinese Spring

PCR:

Polymerase chain reaction

qRT-PCR:

quantitative real time PCR

MDA:

Malondialdehyde

RT-PCR:

Reverse transcription PCR

References

  • Asseng S, Foster I, Turner NC (2011) The impact of temperature variability on wheat yields. Glob Change Biol 17:997–1012

    Article  Google Scholar 

  • Borg S, Brinch PH, Tauris B, Madsen LH, Darbania B, Noeparvara S, Holma PB (2012) Wheat ferritins: improving the iron content of the wheat grain. J Cereal Sci 56(2):204–213

    Article  CAS  Google Scholar 

  • Bukhov N, Wiese C, Neimanis S, Heber U (1999) Heat sensitivity of chloroplasts and leaves: Leakage of protons from thylakoids and reversible activation of cyclic electron transport. Photosynth Res 59:8l–93

    Article  Google Scholar 

  • Cheng ZQ, Guo ZJ, Xu XH, Cai RY, Li DB (2003) Ferritin transgenic rice plants are tolerant to oxidative stress and magnaporthe grisea infection. Acta Genetica Sinica 17(1):86–89

    Google Scholar 

  • Christensen AH, Sharrock RA, Quail PH (1992) Maize polyubiquitin genes: structure, thermal perturbation of expression and transcript splicing, and promoter activity following transfer to protoplasts by electroporation. Plant Mol Bio 18(4):675–689

    Article  CAS  Google Scholar 

  • Dias AS, Lidon FC, Ramalho JC (2009) IV. Heat stress in Triticum: kinetics of Fe and Mn accumulation. Braz J Plant Physiol 21:153–164

    Google Scholar 

  • Drakakaki G, Christou P, Stoger E (2000) Constitutive expression of soybean ferritin cDNA in transgenic Wheat and rice results in increased iron levels in vegetative tissues but not in seeds. Transgenic Res 9:445–452

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto NT, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nat Biotechnol 17:282–286

    Article  CAS  PubMed  Google Scholar 

  • Hyde BB, Hodge AJ, Kahn A, Birnstiel ML (1963) Studies of phytoferritin identification and localization. J Ultrastruct Res 9:248–258

    Article  CAS  Google Scholar 

  • Jin ZQ, Zhu DW (2008) Impacts of changes in climate and its variability on food production in Northeast China. Acta Agron Sci 34(9):1588–1597

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta deltaC(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lobreaux S, Massenet O, Briat JF (1992a) Iron induces ferritin synthesis in maize plantlets. Plant Mol Biol 19(4):563–575

    Article  CAS  PubMed  Google Scholar 

  • Lobreaux S, Yewdall SJ, Briat JF, Harrison PM (1992b) Amino-acid sequence and predicted three-dimensional structure of pea seed (Pisum sativum) ferritin. Biochem J 288:931–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucca P, Hurrell R, Potrykus L (2002) Fighting iron deficiency anemia with iron-rich rice. J Am Coll Nutr 21(3):184–190

    Article  Google Scholar 

  • Marinos NG (1967) Multifunctional plastids in the meristematic region of potato tuber buds. J Ultrastruct Res 17:91–113

    Article  CAS  PubMed  Google Scholar 

  • Niu HB, Yin J, Deng DZ, Qiao YL, Ren JP, Li YC (2007) Clone and expression of HvFer1 cDNA from barley. Plant Physiol Commun 6(43):1015–1019

    Google Scholar 

  • Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. PNAS 101(27):9971–9975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ragland M, Briat JF, Gagnon J, Laulhere JP, Massenet O, Theil EC (1990) Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. J Biol Chem 265(30):18339–18344

    CAS  PubMed  Google Scholar 

  • Ravet K, Touraine B, Boucherez J, Briat J, Gaymard F, Cellier F (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J. 57(3):400–412

    Article  CAS  PubMed  Google Scholar 

  • Routaboul JM, Fischer SF, Browse J (2000) Trienoic fatty acids are required to maintain chloroplast function at low temperatures. Plant Physiol 124:1697–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saadalla MM, Quick JS, Shallahan JF (1990) Heat tolerance in winter wheat:II. Membrane thermostability and field performance. Crop Sci 30(6):1248–1251

    Article  Google Scholar 

  • Spence MJ, Henzi MT, Lammers PJ (1991) The structure of a Phaseolus vulgaris cDNA encoding the iron storage protein ferritin. Plant Mol Biol 17:499–504

    Article  CAS  PubMed  Google Scholar 

  • Streatfield SJ, Magallanes-Lundback ME, Beifuss KK, Brooks CA, Harkey RL, Love RT, Bray J, Howard JA, Jilka JM, Hood EE (2004) Analysis of the maize polyubiquitin-1 promoter heat shock elements and generation of promoter variants with modified expression characteristics. Transgenic Res 13(4):299–312

    Article  CAS  PubMed  Google Scholar 

  • Sun JH, Chen JY, Kuang JF, Chen WX, Lu WJ (2010) Expression of sHSP genes as affected by heat shock and cold acclimation in relation to chilling tolerance in plum fruit. Postharvest Biol Tecnol 55:91–96

    Article  CAS  Google Scholar 

  • Theil EC (2004) Iron, ferritin and nutrition. Annu Rev Nutr 24:327–343

    Article  CAS  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzamana M, Torrizoa L, Krishnana S, Oliveirac M, Gotod F, Dattaa SK (2003) Enhance iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci 151(1):59–66

    Article  CAS  Google Scholar 

  • Xu LJ, Duan XL, Lv YH, Zhang XH, Nie ZS, Xie CJ, Ni ZF, Liang RQ (2014) Silencing of an aphid carboxylesterase gene by use of plant-mediated RNAi impairs Sitobion avenae tolerance of Phoxim insecticides. Transgenic Res 23(2):389–396

    Article  CAS  PubMed  Google Scholar 

  • Yuan XH, Yang XY, Luo XY, Zhou ZY, Pei Y (2002) Purification of Ferritin from pea seed and preparation of its antiserum. Chin J Biochem Mol Biol 18(5):614–618

    CAS  Google Scholar 

  • Zhao YL, Zhou RH, Jia JZ (2008) The homologous cloning of the Ferritin gene from wheat. J Triticeae Crops 28(1):25–30

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Transgenic Program of China (2011ZX08002001) and National Basic Research Program of China (973 Program) (2009CB118300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qixin Sun or Rongqi Liang.

Ethics declarations

Conflict of interest

The authors declared that this study “Ectopic Expression of the Vigna eylindrica FER Gene Enhanced Heat Tolerance in Transgenic Wheat (Triticum aestivum L.)” have not been submitted for publication elsewhere. It is also declared that all authors have contributed significantly to the work and that all authors are in agreement with the content of the manuscript. The authors do not have any possible conflict of interest.

Additional information

Yanjie Zhao and Xiaoyan Shui have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Shui, X., Wang, X. et al. Ectopic expression of the Vigna eylindrica ferritin gene enhanced heat tolerance in transgenic wheat (Triticum aestivum L.). Euphytica 209, 23–30 (2016). https://doi.org/10.1007/s10681-015-1573-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1573-2

Keywords

Navigation