Skip to main content
Log in

Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Marker assisted selection (MAS) for disease resistance is widely applied in practical tomato breeding programs in the public and private sectors. Due to its commercial value and importance as a model crop, tomato has taken the lead in MAS among the horticultural crops. Tomato yellow leaf curl virus, which is transmitted by the whitefly (Bemisia tabaci), is a major threat to tomato production worldwide. The Ty1 and Ty3 resistance loci originated from Solanum chilense LA1969 and LA1932/LA2779, respectively. Recently, the gene responsible for Ty1 resistance was identified as a DFDGD-class RNA-dependent RNA polymerase and was demonstrated to be allelic with Ty3 resistance. The Ph3 resistance locus from S. pimpinellifolium (L3708), which confers incomplete resistance against a widerange of Phytophthora infestans isolates, is considered the most effective source of resistance against tomato late blight. A coiled-coil nucleotide-binding leucine-rich repeat gene on chromosome 9 was determined to be responsible for Ph3 resistance. Resistance against verticillium wilt diseases in tomato is conferred by the Ve locus that contains two closely linked, inversely oriented genes: Ve1 and Ve2. The Ve locus provides resistance against Verticillium alboatrum race 1 and encodes an extracellular leucine-rich repeat receptor-like protein class of disease resistance proteins. We developed reliable and comprehensive molecular markers based on either the single nucleotide polymorphisms or insertions/deletions directly responsible for the resistance provided by the Ty1, Ph3, and Ve1 loci. These gene-based functional molecular markers are expected to enhance the effectiveness and accuracy of MAS for disease resistance in tomato breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acciarri N, Rotino GL, Tamietti G, Valentino D, Voltattorni S, Sabatini E (2007) Molecular markers for Ve1 and Ve2 Verticillium resistance genes from Italian tomato germplasm. Plant Breed 126:617–621

    Article  CAS  Google Scholar 

  • Agrama HA, Scott JW (2006) Quantitative trait loci for tomato yellow leaf curl virus and tomato mottle virus resistance in tomato. J Am Hortic Sci 131:267–272

    CAS  Google Scholar 

  • Anbinder I, Reuveni M, Azari R, Paran I, Nahon S, Shlomo H, Chen L, Lapidot M, Levin I (2009) Molecular dissection of tomato leaf curl virus resistance in tomato line TY172 derived from Solanum peruvianum. Theor Appl Genet 119:519–530

    Article  PubMed  Google Scholar 

  • AVRDC Report 1998. Taiwan: Asian vegetable research and development center 1999. pp. 9–13

  • Bagge M, Xia X, Lubberstedt T (2007) Functional markers in wheat. Curr Opin Plant Biol 10:211–216

    Article  CAS  PubMed  Google Scholar 

  • Black LL, Wang TC, Hanson PM, Chen JT (1996) Late blight resistance in four wild tomato accessions: effectiveness in diverse locations and inheritance of resistance. Phytopathology 86:S24

    Google Scholar 

  • Brouwer DJ, St Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub NILs. Theor Appl Genet 108:628–638

    Article  CAS  PubMed  Google Scholar 

  • Butterbach P, Verlaan MG, Dullemans A, Lohuis D, Visser RG, Bai Y, Kormelink R (2014) Tomato yellow leaf curl virus resistance by Ty-1 involves increased cytosine methylation of viral genomes and is compromised by cucumber mosaic virus infection. Proc Natl Acad Sci USA 111:12942–12947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai G, Restrepo S, Myers K, Zuluaga P, Danies G, Smart C, Fry W (2013) Gene profiling in partially resistant and susceptible near-isogenic tomatoes in response to late blight in the field. Mol Plant Pathol 14:171–184

    Article  CAS  PubMed  Google Scholar 

  • Caicedo AL, Williamson SH, Hernandez RD (2007) Genome-wide patterns of nucleotide polymorphism in domesticated rice. PLoS Genet 3:1745–1756

    Article  CAS  PubMed  Google Scholar 

  • Choi IY, Hyten DL, Matukumalli LK (2007) A soybean transcript map: gene distribution, haplotype and single nucleotide polymorphism analysis. Genetics 176:685–696

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collard BCY, Mackill DJ (2008) Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos Trans R Soc Lond B 363:557–572

    Article  CAS  Google Scholar 

  • Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broadspectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319

    Article  CAS  Google Scholar 

  • Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. Acta Hortic 695:225–240

    Google Scholar 

  • Foolad MR, Merk HL, Ashrafi H (2008) Genetics, genomics and breeding of late blight and early blight resistance in tomato. Crit Rev Plant Sci 27:75–107

    Article  CAS  Google Scholar 

  • Fradin EF, Zhang Z, Ayala JCJ, Castroverde CDM, Nazar RN, Robb J, Liu C, Thomma BPHJ (2009) Genetic dissection of Verticillium wilt resistance mediated by tomato Ve1. Plant Physiol 150:320–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Friedmann M, Lapidot M, Cohen S, Pilowsky M (1998) A novelsource of resistance to tomato yellow leaf curl virus exhibiting asymptomless reaction to viral infection. J Am Soc Hortic Sci 123:1004–1007

    Google Scholar 

  • Giancola S, McKhann HI, Berard A, Camilleri C, Durand S, Libeau P, Roux F, Rebound X, Gut Brunel D (2006) Utilization of three highthroughput SNP genotyping methods, the GOOD assay, Amplifluor and Taqman, in diploid and polyploidy plants. Theor Appl Genet 112:1115–1124

    Article  CAS  PubMed  Google Scholar 

  • Hanson PM, Bernacchi D, Green S, Tanksley SD, Muniyappa V, Padmaja VM, Padmaja AS, Chen H, Kuo G, Fang D, Chen J (2000) Mapping a wild tomato introgression associated with tomato yellow leaf curl virus resistance in a cultivated tomato line. J Am Soc Hortic Sci 125:15–20

    CAS  Google Scholar 

  • Hittalmani S, Parco A, Mew TV, Zeigler RS, Huang N (2000) Fine mapping and DNA marker-assisted pyramiding of the three major genes for blast resistance in rice. Theor Appl Genet 100:1121–1128

    Article  CAS  Google Scholar 

  • Jehan T, Lakhanpaul S (2006) Single nucleotide polymorphism (SNP)-methods and applications in plant genetics: a review. Indian J Biotechnol 5:435–459

    CAS  Google Scholar 

  • Ji Y, Schuster DJ, Scott JW (2007a) Ty-3, a begomovirus resistance locus near the tomato yellow leaf curl virus resistance locus Ty-1 on chromosome 6 of tomato. Mol Breed 20:271–284

    Article  CAS  Google Scholar 

  • Ji Y, Scott J, Hanson P, Graham E, Maxwell D (2007b) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease. Springer, The Netherlands, pp 343–362

    Chapter  Google Scholar 

  • Ji Y, Scott JW, Schuster DJ (2009a) Toward fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. HortScience 44:614–618

    Google Scholar 

  • Ji Y, Scott JW, Schuster DJ, Maxwell DP (2009b) Molecular mapping of Ty-4, a new tomato yellow leaf curl virus resistance locus on chromosome 3 of Tomato. J Am Soc Hortic Sci 134:281–288

    Google Scholar 

  • Jones E, Chu W, Ayele M, Ho J, Bruggeman E, Yourstone K, Rafalski A, Smith OS, McMullen MD, Bezawada C, Warren J, Babayew J, Basu S, Smith S (2009) Development of single nucleotide polymorphism (SNP) markers for use in commercial maize (Zea Mays L.) germplasm. Mol Breed 24:165–176

    Article  CAS  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. PNAS 98:6511–6515

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim HJ, Han JH, Kim S, Lee HR, Shin JS, Kim JH, Cho J, Kim YH, Lee HJ, Kim BD, Choi D (2011) Trichome density of main stem is tightly linked to PepMoV resistance in chili pepper (Capsicum annuum L.). Theor Appl Genet 122:1051–1058

  • Kim MJ, Mutschler MA (2006) Characterization of late blight resistance derived from Solanum pimpinellifolium L3708 against multiple isolates of the pathogen Phytophthora infestans. J Am Soc Hortic Sci 131:637–645

    Google Scholar 

  • Komori T, Nitta N (2005) Utilization of the CAPS/dCAPS method to convert rice SNPs into PCR-based markers. Breed Sci 55:93–98

    Article  CAS  Google Scholar 

  • Kuklev MY, Fesenko IA, Karlov GI (2009) Development of a CAPS marker for the Verticillium wilt resistance in tomatoes. Russ J Genet 45:575–579

    Article  CAS  Google Scholar 

  • Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349

    Article  CAS  Google Scholar 

  • Lagudah ES, Krattinger SG, Herrera-Foesse S, Singh RP, Huerta-Espino J, Spielmeyer W, Brown-Guedira G, Selter LL, Keller B (2009) Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. Theor Appl Genet 119:889–898

    Article  CAS  PubMed  Google Scholar 

  • Lande R, Thompson R (1990) Efficiency of marker-assisted selection in the improvement of quantitative traits. Genetics 124:743–756

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li J, Liu L, Bai Y, Finkers R, Wang F, Du Y, Yang Y, Xie B, Visser RGF, van Heusden AW (2011) Identification and mapping of quantitative resistance to late blight (Phytophthora infestans) in Solanum habrochaites LA1777. Euphytica 179:427–437

    Article  Google Scholar 

  • Merk HL, Foolad MR (2012) Parent-offspring correlation estimate of heritability for late blight resistance conferred by an accession of the tomato wild species Solanum pimpinellifolium. Plant Breed 131:203–210

    Article  Google Scholar 

  • Merk HL, Ashrafi H, Foolad MR (2012) Selective genotyping to identify late blight resistance genes in an accession of the tomato wild species Solanum pimpinellifolium. Euphytica 187:63–75

    Article  Google Scholar 

  • Montgomery J, Wittwer CT, Palais R, Luming Z (2007) Simultaneous mutation scanning and genotyping by high-resolution DNA melting analysis. Nature 2:59–66

  • Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley N (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant-Microbe Interact 11:259–269

    Article  CAS  Google Scholar 

  • Murray HG, Thompson WF (1998) Rapid isolation of high molecular weight DNA. Nucleic Acids Res 8:4321–4325

  • Peirce LC (1971) Linkage tests with Ph conditioning resistance to race 0 Phytophthora infestans. Tomato Genet Coop Rep 21:30

    Google Scholar 

  • Reed GH, Wittwer CT (2004) Sensitivity and specificity of single-nucleotide polymorphism scanning by highresolution melting analysis. Clin Chem 50:1748–1754

  • Rodewald J, Trognitz B (2013) Solanum resistance genes against Phytophthora infestans and their corresponding avirulence genes. Mol Plant Pathol 14:740–757

    Article  CAS  PubMed  Google Scholar 

  • Salgotra RK, Gupta BB, Stewart CN Jr (2014) From genomics to functional markers in the era of next-generation sequencing. Biotechnol Lett 36:417–426

    Article  CAS  PubMed  Google Scholar 

  • Schaible L, Cannon OS, Waddoups B (1951) Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 41:986–990

    Google Scholar 

  • Smart CD, Tanksley SD, Mayton H, Fry WE (2007) Resistance to Phytophthora infestans in Lycopersicon pennellii. Plant Dis 91:1045–1049

    Article  Google Scholar 

  • Thiel T, Kota R, Grosse I, Stein N, Graner A (2004) SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development. Nucleic Acids Res 32:e5

    Article  PubMed Central  PubMed  Google Scholar 

  • Thomson MJ (2014) High-throughput SNP genotyping to accelerate crop improvement. Plant Breed Biotechnol 2:195–212

    Article  Google Scholar 

  • Verlaan MG, Hutton SF, Ibrahem RM, Kormelink R, Visser RGF, Scott JW, Edwards JD, Bai Y (2013) The tomato yellow leaf curl virus resistance genes Ty-1 and Ty-3 are allelic and code for DFDGD-Class RNA–dependent RNA polymerases. PLoS Genet 9:e1003399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • White H, Potts G (2006) Mutation scanning by high resolution melt analysis. Evaluation of rotor-gene 6000 (Corbett Life Science), HR-1 and 384-well lightscanner (Idaho Technology). Nati Genet Ref Lab (Wessex, 2006)

  • Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van-der-Knaap E, Francis D (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34

    Article  CAS  Google Scholar 

  • Yang X, Caro M, Hutton SF, Scott JW, Guo Y, Wang X, Rashid MH, Szinay D, de Jong H, Visser RG, Bai Y, Du Y (2014) Fine mapping of the tomato yellow leaf curl virus resistance gene Ty-2 on chromosome 11 of tomato. Mol Breed 34:749–760

    PubMed Central  PubMed  Google Scholar 

  • Yang W, Sacks EJ, Lewis Ivey ML, Miller SA, Francis DM (2005) Resistance in Lycopersicon esculentum Intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519–527

  • Yeam I, Kang BC, Lindeman W, Frantz JD, Faber N, Jahn MM (2005) Allele-specific CAPS markers based on point mutations in resistance alleles at the pvr1 locus encoding eIF4E in Capsicum. Theor Appl Genet 112:178–186

    Article  CAS  PubMed  Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88(2):141–146

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu L, Zheng Z, Sun Y, Zhou L, Yang Y, Cheng F, Zhang Z, Wang X, Huang S, Xie B, Du Y, Bai Y, Li J (2013) Fine mapping of the Ph-3 gene conferring resistance to late blight (Phytophthora infestans) in tomato. Theor Appl Genet 126:2643–2653

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu L, Wang X, Vossen J, Li G, Li T, Zheng Z, Gao J, Guo Y, Visser RG, Li J, Bai Y, Du Y (2014) The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans. Theor Appl Genet 127:1353–1364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Golden Seed Project (Center for Horticultural Seed Development, 2013003-04-2-SBG10) funded by the Ministry of Agriculture, Food and Rural Affairs, and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014R1A1A1A05006972).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inhwa Yeam.

Additional information

Jungsu Jung and Hyun Jung Kim are co-first authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, J., Kim, H.J., Lee, J.M. et al. Gene-based molecular marker system for multiple disease resistances in tomato against Tomato yellow leaf curl virus, late blight, and verticillium wilt. Euphytica 205, 599–613 (2015). https://doi.org/10.1007/s10681-015-1442-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-015-1442-z

Keywords

Navigation