Skip to main content
Log in

A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting

  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

We investigated the molecular basis of an extremely late bolting, non-heading ‘Leafy Green Parental Line No. 2 (Tsukena No. 2)’, to obtain suitable DNA markers for breeding the late bolting trait in Chinese cabbage (Brassica rapa L. ssp. pekinensis). We found that Tsukena No. 2 contains a ~5 kbp large insertion near the 5′ end of the first intron of BrFLC2, BrFLC3 and BrFLC3′, which are homologs of an Arabidopsis repressor gene for floral transition, FLOWERING LOCUS C (FLC). The transcript abundance of BrFLC1 in Tsukena No. 2 was repressed during cold exposure to the same level as found in a mid-season bolting commercial F1 variety “Muso” (heading Chinese cabbage) and an early-bolting parent of commercial F1 varieties, “Early” (Sakata Co.), whereas repression of BrFLC2 and BrFLC3 containing the large insertion was weak. Furthermore, QTL analysis of a F2 population derived from the Tsukena No. 2 × “Early” revealed that polymorphisms at the BrFLC2 and BrFLC3 loci explained 46.0 and 9.9 % of the phenotypic variation in the bolting time of vernalized plants, respectively. In Arabidopsis, cold-induced repression of FLC and maintenance of that repression are associated with the first intron of FLC. Our study suggests that a naturally occurring large insertion in the first intron resulted in weak repression of BrFLC2 and BrFLC3 during cold exposure and therefore explains the extremely late bolting of the Tsukena No. 2 cultivar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ajisaka H, Kuginuki Y, Yui S et al (2001) Identification and mapping of a quantitative trait locus controlling extreme late bolting in Chinese cabbage (Brassica rapa L. ssp. pekinensis syn. campestris L.) using bulked segregant analysis. Euphytica 118:75–81

    Article  CAS  Google Scholar 

  • Alexandre CM, Hennig L (2008) FLC or not FLC: the other side of vernalization. J Exp Bot 59:1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • De Lucia F, Crevillen P, Jones AME et al (2008) A PHD-polycomb repressive complex 2 triggers the epigenetic silencing of FLC during vernalization. Proc Natl Acad Sci USA 105:16831–16836

    Article  PubMed  Google Scholar 

  • Elers B, Wiebe HJ (1984) Flower formation of Chinese cabbage. I. Response to vernalization and photoperiods. Sci Hortic 22:219–231

    Article  Google Scholar 

  • Hatakeyama K, Horisaki A, Niikura S et al (2010) Mapping of quantitative trait loci for high level of self-incompatibility in Brassica rapa L. Genome 53:257–265

    Article  CAS  PubMed  Google Scholar 

  • Heo JB, Sung S (2011) Vernalization-mediated epigenetic silencing by a long intronic noncoding RNA. Science 331:76–79

    Article  CAS  PubMed  Google Scholar 

  • Hu GL, Hu ZL, Li Y et al (2011) A splicing site mutation in BrpFLC1 and repressed expression of BrpFLC genes are associated with the early flowering of purple flowering stalk. Russian J Plant Physiol 58:431–438

    Article  CAS  Google Scholar 

  • Jack T (2004) Molecular and genetic mechanisms of floral control. Plant Cell 16:S1–S17

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kakizaki T, Kato T, Fukino N et al (2011) Identification of quantitative trait loci controlling late bolting in Chinese cabbage (Brassica rapa L.) parental line Nou 6 gou. Breed Sci 159:151–159

    Article  Google Scholar 

  • Kim SY, Park BS, Kwon SJ et al (2007) Delayed flowering time in Arabidopsis and Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep 26:327–336

    Article  CAS  PubMed  Google Scholar 

  • Lee I, Amasino RM (1995) Effect of vernalization, photoperiod, and light quality on the flowering phenotype of Arabidopsis plants containing the FRIGIDA gene. Plant Physiol 108:157–162

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lempe J, Balasubramanian S, Sureshkumar S et al (2005) Diversity of flowering responses in wild Arabidopsis thaliana strains. PLoS Genet 1:109–118

    Article  CAS  PubMed  Google Scholar 

  • Li F, Kitashiba H, Inaba K, Nishio T (2009) A Brassica rapa linkage map of EST-based SNP markers for identification of candidate genes controlling flowering time and leaf morphological traits. DNA Res 16:311–323

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lou P, Zhao J, Kim JS et al (2007) Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58:4005–4016

    Article  CAS  PubMed  Google Scholar 

  • Lowe J, Moule C, Trick M, Edwards KJ (2004) Efficient large-scale development of microsatellites for marker and mapping applications in Brassica crop species. Theor Appl Genet 108:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mouradov A, Cremer F, Coupland G (2002) Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14:S111–S130

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Osborn TC, Kole C, Parkin IAP et al (1997) Comparison of flowering time genes in Brassica rapa, B. napus and Arabidopsis thaliana. Genetics 146:1123–1129

    CAS  PubMed  Google Scholar 

  • Schmitz RJ, Amasino RM (2007) Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants. Biochim Biophys Acta 1769:269–275

    Article  CAS  PubMed  Google Scholar 

  • Schranz ME, Quijada P, Sung SB et al (2002) Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162:1457–1468

    CAS  PubMed  Google Scholar 

  • Sheldon CC, Burn JE, Perez PP et al (1999) The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sheldon CC, Rouse DT, Finnegan EJ et al (2000) The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci USA 97:3753–3758

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Conn AB, Dennis ES, Peacock WJ (2002) Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14:2527–2537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simpson GG, Gendall AR, Dean C (1999) When to switch to flowering. Annu Rev Cell Dev Biol 15:519–550

    Article  CAS  PubMed  Google Scholar 

  • Sung S, Amasino RM (2006) Molecular genetic studies of the memory of winter. J Exp Bot 57:3369–3377

    Article  CAS  PubMed  Google Scholar 

  • Sung S, He Y, Eshoo TW et al (2006) Epigenetic maintenance of the vernalized state in Arabidopsis thaliana requires like heterochromatin protein 1. Nat Genet 38:706–710

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Iketani H, Nunome T et al (2002) Isolation and characterization of microsatellites in Brassica rapa L. Theor Appl Genet 104:1092–1098

    Article  CAS  PubMed  Google Scholar 

  • Suwabe K, Iketani H, Nunome T et al (2004) Characteristics of microsatellites in Brassica rapa genome and their potential utilization for comparative genomics in Cruciferae. Breed Sci 54:85–90

    Article  CAS  Google Scholar 

  • Suwabe K, Tsukazaki H, Iketani H et al (2006) Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics 173:309–319

    Article  CAS  PubMed  Google Scholar 

  • Teutonico RA, Osborn TC (1995) Mapping loci controlling vernalization requirement in Brassica rapa. Theor Appl Genet 91:1279–1283

    Article  CAS  PubMed  Google Scholar 

  • Van Ooijen J (2004) MapQTL 5, Software for the mapping of quantitative trait loci in experimental populations. Kyazma B. V, Wageningen

    Google Scholar 

  • Van Ooijen J (2006) JoinMap 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B. V, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Werner JD, Borevitz JO, Uhlenhaut NH et al (2005) FRIGIDA-independent variation in flowering time of natural Arabidopsis thaliana accessions. Genetics 170:1197–1207

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Wei K, Cheng F et al (2012) A naturally occurring InDel variation in BraA. FLC. b (BrFLC2) associated with flowering time variation in Brassica rapa. BMC Plant Biol 12:151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yang TJ, Kim S, Kwon SJ et al (2006) Sequence-level analysis of the diploidization process in the triplicated FLOWERING LOCUS C region of Brassica rapa. Plant Cell 18:1339–1347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yuan YX, Wu J, Sun RF et al (2009) A naturally occurring splicing site mutation in the Brassica rapa FLC1 gene is associated with variation in flowering time. J Exp Bot 60:1299–1308

    Article  CAS  PubMed  Google Scholar 

  • Yui S, Hida K (2002) Effects of plant stages on bolting of the Breeding Line “Leafy Green Parental Line No.2” (Brassica rapa L. pekinensis group). J Japan Soc Hortic Sci 71:192–196

    Article  Google Scholar 

  • Yui S, Yoshikawa H (1991) Bolting resistant breeding of Chinese cabbage. 1. Flower induction of late bolting variety without chilling treatment. Euphytica 52:171–176

    Article  Google Scholar 

  • Yui S, Yoshikawa H (1992) Breeding of bolting resistance in Chinese cabbage—critical day length for flower induction of late bolting material with no chilling requirement. J Japan Soc Hortic Sci 61:565–568

    Article  Google Scholar 

  • Zhao J, Kulkarni V, Liu N et al (2010) BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa. J Exp Bot 61:1817–1825

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by “Development of extremely late bolting cultivars in Brassicaceae using molecular analysis of a breeding material which requires long-day for bolting”, Adaptable and Seamless Technology Transfer Program through Target-driven Research & Development, Japan Science and Technology Agency. We would like to thank to Professor Ryo Ohsawa in the University of Tsukuba for support of the construction of linkage map and QTL analysis. We also would like to thank to Dr. Karen S. for a review of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuji Yokoi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 422 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitamoto, N., Yui, S., Nishikawa, K. et al. A naturally occurring long insertion in the first intron in the Brassica rapa FLC2 gene causes delayed bolting. Euphytica 196, 213–223 (2014). https://doi.org/10.1007/s10681-013-1025-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-013-1025-9

Keywords

Navigation