Skip to main content

Advertisement

Log in

ETEM-SG: Optimizing Regional Smart Energy System with Power Distribution Constraints and Options

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

This paper gives a detailed description of the ETEM-SG model, which provides a simulation of the long -term development of a regional multi-energy system in a smart city environment. The originality of the modeling comes from a representation of the power distribution constraints associated with intermittent and volatile renewable energy sources connected at the transmission network like, e.g., wind farms, or the distribution networks like, e.g., roof top PV panels). The model takes into account the options to optimize the power system provided by grid-friendly flexible loads and distributed energy resources, including variable speed drive powered CHP micro-generators, heat pumps, and electric vehicles. One deals with uncertainties in some parameters by implementing robust optimization techniques. A case study, based on the modeling of the energy system of the “Arc Lémanique” region, shows on simulation results, the importance of introducing a representation of power distribution constraints, and options in a regional energy model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. This acronym stands for Energy-Technology-Environment-Model with Smart Grids.

  2. ETEM is available as an open-source code that can be downloaded from the site www.ordecsys.com

  3. We refer to the RITES [14] and TOU [2] projects, which were supported by the Swiss Federal Office of Energy

  4. 31.7 TWh.

  5. ETEM Adaptation Robust

References

  1. Andrey, C., Babonneau, F., Haurie, A., & Labriet, M. (2015). Modélisation et robuste de lattéenuation et de ladaptation dans un systémé énergétique régional. Natures Sciences Socié,té, 23, 133–149.

    Article  Google Scholar 

  2. Andrey, C., Babonneau, F., & Haurie, A. (2014). Time of Use (TOU) Pricing: Adaptive and TOU Pricing Schemes for Smart Technology Integration, Swiss Federal Office of Energy, Publication 291005 available online http://www.bfe.admin.ch/forschungewg/02544/02809/index.html?lang=en&dossier_id=06280.

  3. Babonneau, F., Caramanis, M., & Haurie, A. (2015). Modeling Distribution Options and Constraints for Smart Power Systems with Massive Renewables Penetration, Technical report ORDECSYS, submitted.

  4. Babonneau, F., Kanudia, A., Labriet, M., Loulou, R., & Vial, J.-P. (2012). Energy security: a robust programming approach and application to european energy supply via TIAM. Environmental Modeling and Assessment, 17(1), 19– 37.

    Article  Google Scholar 

  5. Babonneau F., Vial, J.-P., & Apparigliato, R. (2010). Robust optimization for environmental and energy planning. In J.A. Filar, & A. Haurie (Eds.) Handbook on Uncertainty and Environmental Decision Making, International Series in Operations Research and Management Science (pp. 79–126): Springer Verlag.

  6. Ben-Tal, A., El Ghaoui, L., & Nemirovski, A (2009). Robust optimization. Princeton:Princeton University Press.

  7. (2012). Bundesamt für Energie. Die Energieperspektiven für die Schweiz bis 2050, Energienachfrage und Elektrizitä,tsangebot in der Schweiz 2000 –2050.

  8. Fourer, R., & Kernighan, B.W. (2002). AMPL:A Modeling Language for Mathematical Programming. Duxbury Press.

  9. Fragnière, E., & Haurie, A. (1996). MARKAL-Geneva: A Model to Assess Energy-Environment Choices for a Swiss Canton, Chap. 3. In Carraro, C., & Haurie, A. (Eds.) Operations Research and Environmental Management, Fondazione Eni Enrico Mattei, Economics Energy Environment: Kluwer Academic Press.

  10. Fishbone, L.G., & Abilock, H. (1981). MARKAL, a linear-programming model for energy systems analysis; technical description of the BNL version. Energy Research, 5, 353–375.

    Article  Google Scholar 

  11. Mark, H., Rogner, H., Strachan, N., Heaps, C., Huntington, H., Kypreos, S., Hughes, A., Silveira, S., DeCarolis, J., Bazillian, M., & Roehrl, A. (2011). OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development. Energy Policy, 39(10), 5850–5970.

    Article  Google Scholar 

  12. Loulou, R., & Labriet, M. (2009). ETSAP-TIAM, the TIMES integrated assessment model Part 1: Model structure. Computational Management Science, 5, 7–40.

    Article  Google Scholar 

  13. Drouineau, M., Maizi, N., & Mazauric, V. (2014). Impacts of intermittent sources on the quality of power supply: The key role of reliability indicators. Applied Energy, 116, 333–343.

    Article  Google Scholar 

  14. (2013). ORDECSYS, Réseaux intelligents de transport/transmission de l’électricité en Suisse Swiss Federal Office of Energy.

  15. Soyster, A.L. (1973). Convex programming with set-inclusive constraints and applications to inexact linear programming. Operations Research, 21, 1154–1157.

    Article  Google Scholar 

  16. Welsch, M., Howells, M., Bazilian, M., DeCarolis, J.F., Hermann, S., & Rogner, H.H. (October 2012). Modelling elements of Smart Grids - Enhancing the OSeMOSYS (Open Source Energy Modelling System) code. Energy, 46(1), 337–350.

Download references

Acknowledgments

This research is supported by the Qatar National Research Fund under Grant Agreement no 6-1035-5126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Babonneau.

Appendix ETEM shell formulation

Appendix ETEM shell formulation

1.1 A.1 Sets, Parameters, and Variables

1.1.1 A.1.1 Sets

They provide a nomenclature of all the elements in the energy model.

Θ ::

set of periods

S ::

set of timeslices

C ::

set of commodities

L ::

set of regions

P ::

set of technologies

POL ::

set of emission types

P_PROD[c]⊂P::

set of technologies that are producing commodity cC

P_CONS[c]⊂P::

set of technologies that are consuming commodity cC

P_MAP[l]⊂P ::

set of technologies that are installed in region lL

C_MAP[p]⊂C ::

set of commodities that are input or output for technology pP

C_ITEMS[flow_act[p]]⊂C ::

set of commodities in the activity flow

C s ::

set of storage commodities

SUCC[s] ::

successive timeslice of sS used for storage

1.1.2 A.1.2 Parameters

These are values that must be entered by the user. The complete definition of all the parameters constitutes the database of the model.

Economic parameters: they are used to define the objective function.

disc_rate::

Annual discount rate

nb_years [t]::

Number of years in period t∈Θ

cost_icap [t, p]::

Unit cost of capacity increase for technology p at period t

fixom [t, p]::

Fixed maintenance cost per unit of installed capacity for technology p at period t

varom [t, p]::

Variable cost per unit of activity level for technology p at period t

cost_imp [t, s, c]::

Unit cost of import for commodity c in region s at period t

cost_exp [t, s, c]::

Unit cost of export for commodity c in region s at period t

cost_deliv [t, s, p, c]::

Unit cost of delivery for commodity c in technology p in region s at period t

taxe [t, π]::

Unit emission tax for pollutant π at period t

salvage [t, p]::

Salvage value (in %) of technology p that has been installed in period t

avail [p]::

Date of availability of technology p

life [p]::

Life duration of technology p.

Parameters Related to Demands:

network_efficiency [c]::

Global efficiency (≤ 1) of distribution network for commodities other than electricity. The losses in the power distribution networks will be considered in the module representing the activities related to power distribution.

frac_dem [t, s, c]::

Fraction of (useful) demand for commodity c occurring in timeslice s of period t

demand [t, c]::

Useful demand for commodity c in period t.

Parameters Related to Technology Capacities:

avail_factor [t, s, p]::

Availability factor

cap_act [p]::

Capacity factor (translates power into energy)

fraction [s]::

Duration of time slice s in fraction of year

fixed_cap [t, l, p]::

Residual capacity.

Parameters Defining Bounds:

act_bnd_lo [t, s, l, p]::

Lower bound on activity

act_bnd_up [t, s, l, p]::

Upper bound on activity

imp_tot_bnd_lo [t, c]::

Lower bound on import

imp_tot_bnd_up [t, c]::

Upper bound on import

exp_tot_bnd_lo [t, c]::

Lower bound on export

exp_tot_bnd_up [t, c]::

Upper bound on export

cap_bnd_lo [t, l, p]::

Lower bound on capacity

cap_bnd_up [t, l, p]::

Upper bound on capacity

icap_bnd_lo [t, l, p]::

Lower bound on investment

icap_bnd_up [t, l, p]::

Upper bound on investment.

1.1.3 A.1.3 Variables

The decision variables are the following

COST::

System cost (value of objective function)

COM(Θ, S, L, P, C)::

Activity level; production or consumption of commodity C in region L for process P during timeslice S at period Θ

ICAP(Θ, L, P)::

Investment level (increase of capacity) for process P at period Θ and in region L

EXP(Θ, S, C)::

Exports of commodity C during timeslice S at period Θ

IMP(Θ, S, C)::

Imports of commodity C during timeslice S at period Θ

EMI(Θ, POL)::

Emission level of pollutant POL at period Θ resulting from activity levels.

1.2 A.2 Objective Function

The objective function is the total discounted system cost minus the salvage value of the residual life of equipments at the end of the planning period.

$$ \min \mathbf{COST} $$
(27)

with

$$\begin{array}{@{}rcl@{}} \mathbf{COST} & \ge & \sum\limits_{t\in{\Theta}} (1+ \text{disc\_rate})^{-\text{nb\_years}[t]} \left\{\sum\limits_{l \in L, p \in P\_MAP[l]} \text{cost\_icap}[t,p] \mathbf{ICAP}[t,l,p] \right.\\ && +\sum\limits_{l \in L, p \in P\_MAP[l]} \text{fixom}[t,p](\sum\limits_{\begin{array}{c} k\in\{0\dots t\}:\\ \text{life}[p] \ge k+1, \\ t-k\ge \text{avail[p]} \end{array}} \mathbf{ICAP}[t,l,p] \\&& \sum\limits_{s \in S} (\sum\limits_{l \in L, p \in P\_MAP[l]} \text{varom}[t,p] \sum\limits_{c \in C\_ITEMS[\text{flow\_act}[p]]} \mathbf{COM}[t,s,l,p,c] \\&&\left. +\sum\limits_{c \in IMP} \text{cost\_imp}[t,s,c] \mathbf{IMP}[t,s,c] -\sum\limits_{c \in EXP} \text{cost\_exp}[t,s,c] \mathbf{EXP}[t,s,c]\right.\\&& +\sum\limits_{\begin{array}{c} l \in L, p \in P\_MAP[l], \\c \in C\_MAP[p] \end{array}} \text{cost\_deliv}[t,s,p,c] \mathbf{COM}[t,s,l,p,c] )\\&&\left. +\sum\limits_{\pi\in POL}\text{taxe}[t,\pi] \mathbf{EMI}[t,\pi] \right.\\&&\left. - \sum\limits_{\begin{array}{c} l \in L, p \in P_{M}AP[l] : \\t\ge \text{avail}[p] \;\&\; (t+\text{life}[p])\ge T+1 \end{array}} \text{salvage}[t,p]\times \text{cost\_icap}[t,p]\mathbf{ICAP}[t,l,p] \right\} \end{array} $$

1.3 A.3 Constraints

1.3.1 A.3.1 Commodity Balance Equations

For each commodity, or energy form other than electricity, what is produced or imported, at each time slice must be greater or equal to what is consumed or exported. The case of electricity will be treated in the module describing power distribution activities.

$$\forall t \in {\Theta}, s \in S, c \in C$$
$$\begin{array}{@{}rcl@{}} ~\sum\limits_{l \in L, \,p \in P\_PROD[c] \cap P\_MAP[l]}\,(\mathbf{COM}[t,s,l,p,c] + \mathbf{IMP}[t,s,c])\times \text{network\_efficiency}[c]\\ \ge \sum\limits_{l \in L, p \in P\_CONS[c] \cap P\_MAP[l]} \mathbf{COM}[t,s,l,p,c] \\ +\text{frac\_dem}[t,s,c] \times \text{demand}[t,c] + \mathbf{EXP}[t,s,c] \end{array} $$

Capacity Bounds Production For each technology, what is produced is bounded by the available capacity.

$$\forall t \in {\Theta}, s \in S, c \in C, p \in \text{P\_MAP}[l]$$
$$\begin{array}{@{}rcl@{}} ~\sum\limits_{c \in C\_ITEMS[flow\_act[p]]}\mathbf{COM}[t,s,l,p,c]/\mathrm{act_{f}lo}[p,c] \\ < = \text{avail\_factor}[t,s,p]\times \text{cap\_act}[p]\times fraction[s]\times\\ (\sum\limits_{k \in 0 {\dots} t : \text{life}[p]\ge k+1, \; t-k \ge \text{avail}[p]} \mathbf{ICAP}[t-k,l,p]+\text{fixed\_cap}[t,l,p]) \end{array} $$

1.3.2 A.3.2 Balance Equations for Commodity Storage Between Time-Slices

For each storable energy, the amount of stored energy in a given timeslice is transferred to its successive timeslice with a reduction described by a loss factor storage_loss-factor.

$$\forall t \in {\Theta}, c \in C_{s}, s \in S $$
$$\begin{array}{@{}rcl@{}} (\sum\limits_{l \in L, p\in P\_PROD[c] \cap P\_MAP[l]} \mathbf{COM}[t,s,l,p,c])\times \text{storage\_loss-factor}[c] \\ = \sum\limits_{l \in L, p \in P\_CONS[c] \cap P\_MAP[l], \sigma in SUCC[s]} \mathbf{COM}[t,\sigma,l,p,c]; \end{array} $$

1.3.3 A.3.3 Activity bounds

Exogenously defined bounds on activity

$$\forall t \in {\Theta}, s \in S, l \in L, p \in \text{P\_MAP}[l]$$

.

$$\begin{array}{@{}rcl@{}} \text{act\_bnd\_lo}[t,s,l,p] \le \sum\limits_{c \in C\_ITEMS[flow\_act[p]]} \mathbf{COM}[t,s,l,p,c] \le \text{act\_bnd\_up}[t,s,l,p] \end{array} $$

1.3.4 A.3.4 Imports Bounds

Exogenously defined bounds on imports.

$$\forall t \in {\Theta}, s \in S, c \in C$$
$$\begin{array}{@{}rcl@{}} \text{imp\_tot\_bnd\_lo}[t\!,c] \!\le\! \sum\limits_{s \in S} \mathbf{\!IMP}[t\!,s\!,c] \!\le\! \text{imp\_tot\_bnd\_up}[t,c] \end{array} $$

1.3.5 A.3.5 Export Bounds

Exogenously defined bounds on exports.

$$\forall t \in {\Theta}, s \in S, c \in C$$
$$\begin{array}{@{}rcl@{}} \text{e{\kern-.2pt}x{\kern-.2pt}p{\kern-.2pt}\_t{\kern-.2pt}o{\kern-.2pt}t{\kern-.2pt}\_b{\kern-.2pt}n{\kern-.2pt}d{\kern-.2pt}\_l{\kern-.2pt}o}[t\!,\!c] \!\le\! {\sum}_{s \in S} \mathbf{\!EXP}[t,s,c] \!\le \text{exp\_tot\_bnd\_up}[t,c] \end{array} $$

1.3.6 A.3.6 Capacity Bounds

Exogenously defined bounds on capacity.

$$\forall t \in {\Theta}, l \in L, p \in \text{P\_MAP}[l]$$
$$\begin{array}{@{}rcl@{}} \text{cap\_bnd\_lo}[t,l,p] \le \sum\limits_{k \in 0{\dots} t : \text{life}[p]\ge k+1\, \&\, t-k\ge \text{avail}[p]} \mathbf{ICAP}[t-k,l,p]+\text{fixed\_cap}[t,l,p] \le \text{cap\_bnd\_up}[t,l,p] \end{array} $$

1.3.7 Investment Bounds

Exogenously defined bounds on investment.

$$\forall t \in {\Theta}, l \in L, p \in \text{P\_MAP}[l]$$
$$\begin{array}{@{}rcl@{}} \text{icap\_bnd\_lo}[t,l,p] \le \mathbf{ICAP}[t,l,p] \le \text{icap\_bnd\_up}[t,l,p] \end{array} $$

1.3.8 A.3.7 Peak Reserve Equations

Global reserve to cover peak load variations. These constraints impose that the total capacity of all processes producing a commodity at each time period and in each region must exceed the average demand in the time-slice where peaking occurs by a certain percentage. This constraint introduces a safety margin to protect against random events not explicitly represented in the model.

$$\forall t \in {\Theta}, s \in S, c \in C$$
$$\begin{array}{@{}rcl@{}} 1/(1+peak\_reserve[t,s,c])\times (\sum\limits_{l \in L, p \in P\_PROD[c] \cap P\_MAP[l] } \\ cap\_act[p] \times peak\_prod[p,s,c] \times fraction[s] \times avail\_factor[t,s,p] \times \\ (\sum\limits_{k \in 0..t : life[p] \ge k+1 \text{ and } t-k \ge avail[p]} \mathbf{VAR\_ICAP}[t-k,l,p]+fixed\_cap[t,l,p]) \\ + \sum\limits_{l \in L, p \in P\_PROD[c] \cap P\_MAP[l]} peak\_prod[p,s,c]\times \mathbf{VAR\_COM}[t,s,l,p,c]\\ + \sum\limits_{l \in L} \mathbf{VAR\_IMP}[t,s,l,c] ) \times network\_efficiency[c]\\ \ge \\ \sum\limits_{l \in L, p \in P\_CONS[c] \cap P\_MAP[l]} \mathbf{VAR\_COM}[t,s,l,p,c] \\ + \sum\limits_{l \in L} \mathbf{VAR\_EXP}[t,s,l,c] \end{array} $$

Remark 3

This global reserve must be distinguished from the system reserve that we will introduce later on, when modeling the power distribution level, which has a role of coping with production variations intervening, in a fast time scale, due to intermittency of wind and solar generation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babonneau, F., Caramanis, M. & Haurie, A. ETEM-SG: Optimizing Regional Smart Energy System with Power Distribution Constraints and Options. Environ Model Assess 22, 411–430 (2017). https://doi.org/10.1007/s10666-016-9544-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-016-9544-0

Keywords

Navigation