Skip to main content
Log in

Stress analysis for long thermoelastic rods with mixed boundary conditions

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

A hybrid method involving boundary analysis and boundary collocation is used to obtain an approximate solution for a plane problem of uncoupled thermoelasticity with mixed thermal and mechanical boundary conditions in a square domain with one curved side. The unknown functions in the cross-section are obtained in the form of series expansions in Cartesian harmonics. A boundary analysis reveals the singular behavior of the solution at the transition points. In order to simulate the weak discontinuities of the temperature function and the discontinuities of stress, these expansions are enriched with proper harmonic functions with a singular behavior at the transition points. The results are discussed, and the functions of practical interest are represented on the boundary and also inside the domain. The locations where possible debonding of the fixed part of the boundary may take place are noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Nowacki W (1962) Thermoelasticity. In: von Kármán T, Deyden HL (eds) International series of monographs on aeronautics and astronautics, division I: solid and structural mechanics, vol 3. Addison-Wesley, Reading

  2. Ieşan D (2004) Thermoelastic models of continua. In: Gladwell GML (ed) Solid mechanics and its applications, vol 118. Springer, Dordrecht

    Google Scholar 

  3. Hetnarski RB, Eslami MR (2009) Thermal stresses-advanced theory and applications. Springer, Dordrecht

    MATH  Google Scholar 

  4. Shanker MU, Dhaliwal RS (1972) Singular integral equations in asymmetric thermoelasticity. J Elast 2(1):59–71

    Article  MathSciNet  Google Scholar 

  5. Singh BM, Dhaliwal RS (1978) Mixed boundary-value problems of steady-state thermoelasticity and electrostatics. J Therm Stress 1(1):1–11

    Article  Google Scholar 

  6. Abou-Dina MS, Ghaleb AF (2002) On the boundary integral formulation of the plane theory of thermoelasticity. J Therm Stress 25(1):1–29

    Article  Google Scholar 

  7. Abou-Dina MS, El-Seadawy G, Ghaleb AF (2007) On the boundary integral formulation of the plane problem of thermo-elasticity with applications (computational aspects). J Therm Stress 30(5):475–503

    Article  Google Scholar 

  8. El-Dhaba AR, Ghaleb AF, Abou-Dina MS (2003) A problem of plane, uncoupled linear thermoelasticity for an infinite, elliptical cylinder by a boundary integral method. J Therm Stress 26(2):93–121

  9. Hasebe N, Wanga X (2005) Complex variable method for thermal stress problem. J Therm Stress 28(6–7):595–648

    Article  MathSciNet  Google Scholar 

  10. Han JJ, Hasebe N (2002) Green’s function for thermal stress mixed boundary-value problem of an infinite plane with an arbitrary hole under a point heat source. J Therm Stress 25(12):1147–1160

    Article  Google Scholar 

  11. Şeremet V (2010) New Poisson integral formulas for thermoelastic half-space and other canonical domains. Eng Anal Bound Elem 34(2):158–162

    Article  MathSciNet  MATH  Google Scholar 

  12. Şeremet V (2010) New explicit Green’s functions and Poisson integral formula for a thermoelastic quarter-space. J Therm Stress 33(4):356–386

    Article  Google Scholar 

  13. Şeremet V (2010) Exact elementary Green functions and Poisson-type integral formulas for a thermoelastic half-wedge with applications. J Therm Stress 33(12):1156–1187

    Article  Google Scholar 

  14. Şeremet V (2011) A new technique to derive the Green’s type integral formula in thermoelasticity. Eng Math 69(4):313–326

    Article  MathSciNet  MATH  Google Scholar 

  15. Şeremet V (2011) Deriving exact Green’s functions and integral formulas for a thermoelastic wedge. Eng Anal Bound Elem 35(3):327–332

    MathSciNet  MATH  Google Scholar 

  16. Şeremet V (2012) New closed-form Green’s function and integral formula for a thermoelastic quadrant. Appl Math Model 36(2):799–812

    Article  MathSciNet  MATH  Google Scholar 

  17. Şeremet V (2014) Recent integral representations for thermoelastic Green’s functions and many examples of their exact analytical expressions. J Therm Stress 37(5):561–584

    Article  Google Scholar 

  18. Şeremet V, Bonnet G (2011) New closed-form thermoelastostatic Green’s function and Poisson-type integral formula for a quarter-plane. Math Comput Model 53(1–2):347–358

    Article  MathSciNet  MATH  Google Scholar 

  19. Meleshko VV (1995) Equilibrium of elastic rectangle: Mathieu–Inglis–Pickett solution revisited. J Elast 40:207–238

    Article  MathSciNet  MATH  Google Scholar 

  20. Meleshko VV (1997) Bending of an elastic rectangular clamped plate: exact versus ’engineering’ solutions. J Elast 48:1–50

    Article  MathSciNet  MATH  Google Scholar 

  21. Meleshko VV (2011) Thermal stresses in an elastic rectangle. J Elast 105(1–2):61–92

    Article  MathSciNet  MATH  Google Scholar 

  22. Chen WQ, Lee KY, Ding HI (2004) General solution for transversely isotropic magneto-electro-thermoelasticity and the potential theory method. Int J Eng Sci 42(13–14):1361–1379

    Article  MATH  Google Scholar 

  23. El-Dhaba AR, Ghaleb AF, Abou-Dina MS (2007) A plane problem of uncoupled thermomagnetoelasticity for an infinite, elliptical cylinder carrying a steady axial current by a boundary integral method. Appl Math Model 31(3):448–477

  24. Kupradze DV (1963) Methods of potential in theory of elasticity. Fizmatgiz, Moscow

    MATH  Google Scholar 

  25. Jaswon MA, Symm GT (1977) Integral equation methods in potential theory and elastostatics. Academic Press, London

    MATH  Google Scholar 

  26. Helsing J, Ojala R (2008) On the evaluation of layer potentials close to their sources. J Comput Phys 227(5):2899–2921

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Fairweather G, Karageorghis A (1998) The method of fundamental solutions for elliptic boundary-value problems. Adv Comput Math 9:69–95

    Article  MathSciNet  MATH  Google Scholar 

  28. Abou-Dina MS (2002) Implementation of Trefftz method for the solution of some elliptic boundary-value problems. J Appl Math Comput 127(1):125–147

    Article  MathSciNet  MATH  Google Scholar 

  29. Abou-Dina MS, Ghaleb AF (2004) A variant of Trefftz’s method by boundary Fourier expansion for solving regular and singular plane boundary-value problems). J Comput Appl Math 167:363–387

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Read WW (2007) An analytic series method for Laplacian problems with mixed boundary conditions. J Comput Appl Math 209:22–32

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Haller-Dintelmann R, Kaiser H-C, Rehberg J (2008) Elliptic model problems including mixed boundary conditions. J Math Pure Appl 89:25–48

    Article  MathSciNet  MATH  Google Scholar 

  32. Costea N, Firoiu I, Preda FD (2013) Elliptic boundary-value problems with nonsmooth potential and mixed boundary conditions. J Therm Stress 58(9):1201–1213

    MathSciNet  MATH  Google Scholar 

  33. El-Dhaba AR, Abou-Dina MS, Ghaleb AF (2015) Deformation for a rectangle by a finite Fourier transform. J ComputTheor Nanosci 12:1–7

  34. El-Dhaba AR, Abou-Dina MS (2015) Thermal stresses induced by a variable heat source in a rectangle and variable pressure at its boundary by finite Fourier transform. J Therm Stress 38:677–700

    Article  Google Scholar 

  35. Altiero NJ, Gavazza SD (1980) On a unified boundary-integral equation method. J Elast 10(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

  36. Heise U (1980) Systematic compilation of integral equations of the Rizzo type and of Kupradze’s functional equations for boundary-value problems of plane elastostatics. J Elast 10(1):23–56

    Article  MATH  Google Scholar 

  37. Heise U (1982) Solution of integral equations for plane elastostatical problems with discontinuously prescribed boundary values. J Elast 12(3):293–312

    Article  MATH  Google Scholar 

  38. Koizumia T, Tsujib T, Takakudac K, Shibuya T, Kurokawad K (1988) Boundary integral equation analysis for steady thermoelastic problems using thermoelastic potential. J Therm Stress 11(4):341–352

    Article  Google Scholar 

  39. Constanda C (1995) The boundary integral equation method in plane elasticity. Proc Am Math Soc 123(11):3385–3396

    Article  MathSciNet  MATH  Google Scholar 

  40. Constanda C (1995) Inteqral equations of the first kind in plane elasticity. Q Appl Math Mech Solids 1:251–260

    Article  Google Scholar 

  41. Schiavone P (1996) Integral equation methods in plane asymmetric elasticity. J Elast 43(1):31–43

    Article  MathSciNet  MATH  Google Scholar 

  42. Peters G, Helsing J (1998) Integral equation methods and numerical solutions of crack and inclusion problems in planar elastostatics. Siam J Appl Math 59(3):965–982

    Article  MathSciNet  MATH  Google Scholar 

  43. Schiavone P (2001) Integral solutions of mixed problem in a theory of plane strain elasticity with microstructure. Int J Eng Sci 39:1091–1100

    Article  MathSciNet  MATH  Google Scholar 

  44. Wu X, Li C, Kong W (2006) A Sinc-collocation method with boundary treatment for two-dimensional elliptic boundary value problems. J Comput Appl Math 196:58–69

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Elliotis M, Georgiou G, Xenophontos C (2007) The singular function boundary integral method for biharmonic problems with crack singularities. Eng Anal Bound Elem 31:209–215

    Article  MATH  Google Scholar 

  46. Li Z-C, Chu P-C, Young L-J, Lee M-G (2010) Models of corner and crack singularity of linear elastostatics and their numerical solutions. Eng Anal Bound Elem 34:533–548

    Article  MathSciNet  MATH  Google Scholar 

  47. Natroshvili D, Stratis IG, Zazashvili S (2010) Boundary integral equation methods in the theory of elasticity of hemitropic materials: a brief review. J Comput Appl Math 234:1622–1630

    Article  MathSciNet  MATH  Google Scholar 

  48. Cheng P, Luo X, Wang Z, Huang J (2012) Mechanical quadrature methods and extrapolation algorithms for boundary integral equations with linear boundary conditions in elasticity. J Elast 108(2):193–207

    Article  MathSciNet  MATH  Google Scholar 

  49. Atluri SN, Zhu TL (2002) The meshless local Petrov–Galerkin (MLPG) approach for solving problems in elasto-statics. J Comput Mech 25:169–179

    Article  ADS  MATH  Google Scholar 

  50. Rui Z, Jin H, Tao L (2006) Meshless local boundary integral equation method for 2D- elastodynamic problems. Eng Anal Bound Elem 30:391–398

    Article  Google Scholar 

  51. Sladek J, Sladek V, Van Keer R (2003) Meshless local boundary integral equation method for 2D-elastodynamic problems. Int J Numer Meth Eng 57:235–249

    Article  MATH  Google Scholar 

  52. Helsing J (2009) Integral equation methods for elliptic problems with boundary conditions of mixed type. J Comput Phys 228:8892–8907

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Khuri MA (2011) Boundary-value problems for mixed type equations and applications. Nonlinear Anal 74:6405–6415

    Article  MathSciNet  MATH  Google Scholar 

  54. Gjam AS, Abdusalam HA, Ghaleb AF (2013) Solution for a problem of linear plane elasticity with mixed boundary conditions on an ellipse by the method of boundary integrals. J Egypt Math Soc 21(3):361–369

    Article  MathSciNet  MATH  Google Scholar 

  55. Williams ML (1952) Stress singularities resulting from various boundary conditions. J Appl Mech 19(4):526–528

    Google Scholar 

  56. Haas R, Brauchli H (1992) Extracting singularities of Cauchy integrals-a key point of a fast solver for plane potential problems with mixed boundary conditions. J Comput Appl Math 44:167–186

    Article  MathSciNet  MATH  Google Scholar 

  57. Gusenkova AA, Pleshchinskii NB (2000) Integral equations with logarithmic singularities in the kernels of boundary-value problems of plane elasticity theory for regions with a defect. J Appl Math Mech 64(3):435–441

    Article  MathSciNet  Google Scholar 

  58. Kotousov A, Lew YT (2006) Stress singularities resulting from various boundary conditions in angular corners of plates of arbitrary thickness in extension. Int J Solids Struct 43(17):5100–5109

    Article  MATH  Google Scholar 

  59. El-Seadawy G, Abou-Dina MS, Bishai SS, Ghaleb AF (2006) Implementation of a boundary integral method for the solution of a plane problem of elasticity with mixed geometry of the boundary. Proc Math Phys Soc Egypt 85:57–73

    MathSciNet  Google Scholar 

  60. Helsing J, Ojala R (2008) Corner singularities for elliptic problems: Integral equations, graded meshes, quadrature, and compressed inverse preconditioning. J Comput Phys 227(20):8820–8840

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Helsing J (2011) A fast and stable solver for singular integral equations on piecewise smooth curves. SIAM J Sci Comput 33(1):153–174

    Article  MathSciNet  MATH  Google Scholar 

  62. Li Z-C, Chu P-C, Young L-J, Lee M-G (2010) Combined Trefftz methods of particular and fundamental solutions for corner and crack singularity of linear elastostatics. Eng Anal Bound Elem 34:632–654

    Article  MathSciNet  MATH  Google Scholar 

  63. Lee M-G, Young L-J, Li Z-C, Chu P-C (2011) Mixed types of boundary conditions at corners of linear elastostatics and their numerical solutions. Eng Anal Bound Elem 35:1265–1278

    Article  MathSciNet  MATH  Google Scholar 

  64. Gillman A, Hao S, Martinsson PG (2014) A simplified technique for the efficient and highly accurate discretization of boundary integral equations in 2D on domains with corners. J Comput Phys 256:214–219

    Article  ADS  MathSciNet  MATH  Google Scholar 

  65. Bowles JE (1988) Foundation analysis and design, 4th edn. McGraw-Hill, New York

    Google Scholar 

  66. Kolodziej JA, Kleiber M (1989) Boundary collocation method vs FEM for some harmonic 2-d problems. Comput Struct 33(1):155–168

    Article  MATH  Google Scholar 

  67. Abou-Dina MS, Ghaleb AF (1999) On the boundary integral formulation of the plane theory of elasticity with applications (analytical aspects). J Comput Appl Math 106:55–70

    Article  MathSciNet  MATH  Google Scholar 

  68. Abou-Dina MS, Ghaleb AF (2003) On the boundary integral formulation of the plane theory of elasticity with applications (computational aspects). J Comput Appl Math 159:285–317

    Article  ADS  MathSciNet  MATH  Google Scholar 

  69. Janke E, Emde F, Lösch F (1968) Tables of higher, functions edn. L.I, Sedov, Nauka, Moscow. McGraw-Hill, Moscow (in Russian)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Rawy.

Appendices

Appendix 1: Boundary representation of harmonic functions

For an arbitrary point \((x,y) \in D\), the boundary integral representation of harmonic functions reads:

$$\begin{aligned} f(x,y)= \frac{1}{2 \pi }\oint _C \left( f \, \frac{\partial \ln R}{\partial n'} - \ln R \, \frac{\partial f}{\partial n'} \right) \, \mathrm{d}s'. \end{aligned}$$

Here R is the distance between the point (xy) and the current integration point. When the point (xy) tends to a boundary point, this relation transforms into an integral equation for the boundary values of the function f. Using integration by parts, this may be rewritten as

$$\begin{aligned} f(x,y) = \frac{1}{\pi }\oint _C\left( f(x',y')\frac{\partial \ln R}{\partial n'} +\big (f^{c}(x',y')-f^{c}(x,y)\big ) \frac{\partial \ln R}{\partial \tau '}\right) \, \mathrm{d}s', \end{aligned}$$

where \((x',y')\) is the current integration point.

This last equation contains removable singularities, which can be treated as explained in [67].

Appendix 2: The first and second derivatives of harmonic functions with respect to x and y on the boundary

For a general harmonic function f in the cross section, the following formulas are used:

$$\begin{aligned} \frac{\partial f}{\partial x}\bigg |_{i}&=\frac{1}{\omega _{i}^{2}}\left( \dot{f}^{c}_{i}\,\dot{y}_i+\dot{f}_{i}\,\dot{x}_i\right) , \\ \frac{\partial f}{\partial y}\bigg |_{i}&=\frac{1}{\omega _{i}^{2}}\left( \dot{f}_{i}\,\dot{y}_i-\dot{f}^{c}_{i}\,\dot{x}_i\right) , \\ \frac{\partial ^{2} f}{\partial y^{2}}\bigg |_{i}&=\frac{\alpha _{i}}{\omega ^{4}_{i}}\,\ddot{f}_{i}-\frac{\beta _{i}}{\omega ^{4}_{i}}\,\ddot{f}^{c}_{i}+\frac{\varrho _{i}}{\omega ^{6}_{i}}\,\dot{f}_{i}+\frac{\rho _{i}}{\omega ^{6}_{i}}\,\dot{f}^{c}_{i}, \\ \frac{\partial ^{2} f}{\partial x\, \partial y }\bigg |_{i}&=\frac{\beta _{i}}{\omega ^{4}_{i}}\,\ddot{f}_{i}+\frac{\alpha _{i}}{\omega ^{4}_{i}}\,\ddot{f}^{c}_{i}-\frac{\rho _{i}}{\omega ^{6}_{i}}\,\dot{f}_{i}-\frac{\varrho _{i}}{\omega ^{6}_{i}}\,\dot{f}^{c}_{i}, \\ \frac{\partial ^{2} f}{\partial x^{2}}\bigg |_{i}&=-\frac{\alpha _{i}}{\omega ^{4}_{i}}\,\ddot{f}_{i}+\frac{\beta _{i}}{\omega ^{4}_{i}}\,\ddot{f}^{c}_{i}+\frac{\varrho _{i}}{\omega ^{6}_{i}}\,\dot{f}_{i}-\frac{\rho _{i}}{\omega ^{6}_{i}}\,\dot{f}^{c}_{i}, \end{aligned}$$

where f stands for any one of the used harmonic functions, and

$$\begin{aligned} \rho _{i}&=\alpha _{i}\,\gamma _{i}+\beta _{i}\,\delta _{i},\\ \varrho _{i}&=\alpha _{i}\,\delta _{i}-\beta _{i}\,\gamma _{i}, \end{aligned}$$

with

$$\begin{aligned} \alpha _{i}&=\dot{y}^{2}_{i}-\dot{x}^{2}_{i},\\ \beta _{i}&=2\,\dot{x}_{i}\,\dot{y}_{i},\\ \gamma _{i}&=\dot{x}_{i}\,\ddot{y}_{i}-\dot{y}_{i}\,\ddot{x}_{i},\\ \delta _{i}&=\dot{x}_{i}\,\ddot{x}_{i}+\dot{y}_{i}\,\ddot{y}_{i}. \end{aligned}$$

Appendix 3: Treating the stress singularities

Fig. 17
figure 17

The function h(x)

Fig. 18
figure 18

Green’s function technique

In order to simulate the singular behaviours of stresses at the two boundary points of contact, we have proceeded according to the following scheme:

  1. 1.

    Our goal is to introduce a harmonic function that has weak singularities at a boundary point, more precisely a harmonic function that has discontinuous second derivatives at a boundary point.

  2. 2.

    Let h(x) be a function of the real variable x defined on the real axis, such that it is continuous with a continuous derivative everywhere, but has a finite jump in the second derivative at the point \(x=0\). Let this function be of the form:

    $$\begin{aligned} h(x)= {\left\{ \begin{array}{ll} 0 &{} x\le 0,\\ \\ \dfrac{1}{2}\,x^2\,\mathrm{e}^{-x}&{} x>0. \end{array}\right. } \end{aligned}$$

    The exponential function is needed here to make the function integrable on the real axis. The graph of this function is shown in Fig. 17.

  3. 3.

    The boundary integral representation of harmonic functions applied to a function f which is harmonic in a simply connected domain D bounded by a smooth surface S yields

    $$\begin{aligned} f(x, y) = \oint _s \left[ f \frac{\partial }{\partial n'}{\left( \frac{1}{2\pi } \ln R \right) } - \left( \frac{1}{2\pi } \ln R \right) \frac{\partial }{\partial n'} {f} \right] \, \mathrm{d}s', \end{aligned}$$
    (22)

    where (xy) is an arbitrary point in D, \(n'\) denotes the outward unit normal to S at the integration point, and R is the distance function between the point (xy) and the integration point.

    If D is the upper half-plane \((\xi , \eta ), \, \eta > 0\), the previous equation takes the form:

    $$\begin{aligned} f(x, y) = - \int _{-\infty }^{+\infty } \left[ f \frac{\partial }{\partial \eta }{\left( \frac{1}{2\pi } \ln R \right) } - \left( \frac{1}{2\pi } \ln R \right) \frac{\partial }{\partial \eta } {f} \right] \, \mathrm{d} \xi . \end{aligned}$$
    (23)

    Let \(R_1\) be the distance shown in Fig. 18. The function \(\ln R_1\) is harmonic on the upper half-plane. A well-known theorem of the Theory of Potential, applied to the harmonic functions f and \(\ln R_1\), yields

    $$\begin{aligned} 0 = \int _{-\infty }^{+\infty } \left[ f \frac{\partial }{\partial \eta }{\left( \frac{1}{2\pi } \ln R_1 \right) } - \left( \frac{1}{2\pi } \ln R_1 \right) \frac{\partial }{\partial \eta } {f} \right] \, \mathrm{d} \xi . \end{aligned}$$
    (24)

    Adding and noting that \(R = R_1\) on the \(\xi \)-axis, one gets

    $$\begin{aligned} f(x,y)= & {} - \int _{-\infty }^{+\infty } \left[ f \frac{\partial }{\partial \eta }{\left( \frac{1}{2\pi } \ln R - \frac{1}{2\pi } \ln R_1 \right) } \right] \, \mathrm{d} \xi \\= & {} \int _{-\infty }^{+\infty } \left[ f \frac{\partial }{\partial \eta }{\left( \frac{1}{2\pi } \ln \frac{1}{R} - \frac{1}{2\pi } \ln \frac{1}{R_1} \right) } \right] \, \mathrm{d} \xi . \end{aligned}$$

    The function under the normal derivative in the last equation is just Green’s function for the Dirichlet problem in the upper half-plane:

    $$\begin{aligned} G(\xi , \eta ; x, y)= & {} \frac{1}{2\pi } \ln \frac{1}{R} - \frac{1}{2\pi } \ln \frac{1}{R_1} \\= & {} \frac{1}{2\pi } \ln \frac{R_1}{R}. \end{aligned}$$

    One has

    $$\begin{aligned} \frac{\partial G}{\partial \eta }= & {} \frac{1}{2 \pi } \frac{\partial }{\partial \eta } \ln \frac{R_1}{R} \\= & {} \frac{1}{4 \pi } \frac{\partial }{\partial \eta } \ln \frac{(\xi - x)^2 + (\eta + y)^2}{(\xi - x)^2 + (\eta - y)^2} \\= & {} \frac{1}{2 \pi } \frac{(\xi - x)^2 + (\eta - y)^2}{(\xi - x)^2 + (\eta + y)^2} \frac{(\eta +y) \left[ (\xi - x)^2 + (\eta - y)^2 \right] -(\eta -y) \left[ (\xi - x)^2 + (\eta + y)^2 \right] }{\left[ (\xi - x)^2 + (\eta - y)^2 \right] ^2}. \end{aligned}$$

    Thus,

    $$\begin{aligned} \left. \frac{\partial G}{\partial \eta }\right| _{\eta =0} = \frac{1}{2 \pi } \frac{2y}{(\xi - x)^2 + y^2}. \end{aligned}$$

    and the function f takes the form:

    $$\begin{aligned} f(x, y)= & {} \frac{1}{2 \pi } \int _{-\infty }^{+\infty } h(\xi ) \, \frac{2\,y}{(\xi - x)^2 + y^2} \, \mathrm{d} \xi \end{aligned}$$
    (25)
    $$\begin{aligned}= & {} \frac{1}{2 \pi } \int _{0}^{+\infty } \xi ^2\,e^{-\xi }\, \frac{y}{(\xi - x)^2 + y^2} \, \mathrm{d} \xi . \end{aligned}$$
    (26)
Fig. 19
figure 19

Singular stresses

  1. 4.

    In order to perform the integration, we write

    $$\begin{aligned} \frac{\xi ^2}{(\xi - x)^2 + y^2} = \frac{\xi ^2}{\xi ^2 - 2x \xi + x^2 + y^2} = \frac{\xi ^2}{(\xi + c_1)(\xi + c_2)} , \end{aligned}$$
    (27)

    where

    $$\begin{aligned} c_1 = -x + i y, \qquad c_2 = -x - i y = \bar{c_1} \end{aligned}$$
    (28)

    and “bar” denotes the conjugate. Expansion in partial fractions yields after some manipulations:

    $$\begin{aligned} \frac{\xi ^2}{(\xi - x)^2 + y^2} = 1 -\frac{c_1^2}{2 i y} \frac{1}{\xi + c_1}+ \frac{c_2^2}{2 i y} \frac{1}{\xi + c_2}. \end{aligned}$$
    (29)

    Hence,

    $$\begin{aligned} f(x, y) = \frac{1}{2 \pi }\, \int _{0}^{+\infty }\left[ y -\frac{c_1^2}{2 i}\, \frac{1}{\xi + c_1}+ \frac{c_2^2}{2 i}\, \frac{1}{\xi + c_2}\right] \,\mathrm{e}^{-\xi }\, \mathrm{d} \xi . \end{aligned}$$
    (30)
  2. 5.

    Next, introduce the integral exponential function \(E_1(z)\) of the complex argument z by the formula ([69, p. 62]):

    $$\begin{aligned} E_1(z) = \int _{z}^{\infty } \frac{\mathrm{e}^{-t}}{t}\,\mathrm{d}t = \mathrm{e}^{- z} \int _{0}^{\infty } \frac{\mathrm{e}^{-t}}{t+z}\,\mathrm{d}t. \end{aligned}$$
    (31)

    One has

    $$\begin{aligned} E_1(z) = -\gamma - \ln (z) - \sum _{n=1}^{\infty } \frac{(-1)^n\,z^n}{n\,n!}, \end{aligned}$$
    (32)

    where \(\gamma = 0.5772156649\) is Euler’s constant. Finally,

    $$\begin{aligned} f(x,y) = \frac{1}{2\pi } \left[ y + 2 R\mathrm{e}\left( \frac{i\,c_1^2}{2}\, \mathrm{e}^{c_1}\, E_1(c_1)\right) \right] . \end{aligned}$$

    Substitution for the exponential integral function allows one to compute the function f(xy).

  3. 6.

    The obtained function will now be centered at each of the two boundary separation points in order to simulate the behavior of stresses there. The sum of the resulting two functions is now taken to replace the function \(\psi \) in the above formulation, and will be denoted \(\psi S\). The three-dimensional plots illustrated in Fig. 19 show the harmonic function with singular boundary behavior, and the singular stresses as calculated from it as the stress function.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Refaie, A.O., Al-Ali, A.Y., Almutairi, K.H. et al. Stress analysis for long thermoelastic rods with mixed boundary conditions. J Eng Math 106, 23–46 (2017). https://doi.org/10.1007/s10665-016-9891-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9891-5

Keywords

Mathematics Subject Classification

Navigation