Skip to main content
Log in

Second-order high-frequency approximation of inertial waves in viscous flows and its validity on different time scales

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

High-frequency asymptotics is now a standard tool for analyzing localized hydrodynamic instabilities in many physical situations: flows with high Reynolds number, stratification, and rotation, to name a few. In general, the method gives an approximation which is first-order accurate in the asymptotic parameter. Here, a second-order accurate WKBJ (Wentzel–Kramers–Brillouin–Jeffreys) approximation is derived and its numerical properties are reported when applied to incompressible viscous flows. Numerical experiments compare the first- and second-order WKBJ approximations with direct numerical simulation (DNS) when computing the evolution of wave packet disturbances superimposed on a base flow. We analyze WKBJ’s convergence rate, time transient properties, and long-time behavior for eigenvalue calculations. Numerical experiments are performed with two base flows: Taylor–Green vortex, which is symmetric, and another vortex where the symmetry is broken. We find that the second-order WKBJ is excellent for approximating the transient features of wave packets in both base flows including the peaks of velocity related to the Orr mechanism of transient growth. Despite its success with transients, the second-order WKBJ remains accurate until some instant of time when, usually, it diverges from the DNS solution. Scale separation, essential for WKBJ, breaks down at this moment. We have identified a particular feature in the Lagrangian map of particles that explains, and predicts, where and when WKBJ and DNS diverge significantly. Because WKBJ may become imprecise when applied for long-time integration of viscous flows, it may yield incorrect approximation for eigenvalue calculations. Understanding its limitations is the key for successful application of WKBJ approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lifschitz A, Hameiri E (1991) Local stability conditions in fluid dynamics. Phys Fluids A 3:2644–2654

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Craik DD, Criminale WO (1986) Evolution of wavelike disturbance in shear flows: a class of exact solutions of the Navier–Stokes equation. Proc R Soc Lond A 406:13–18

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Greenspan HP (1968) The theory of rotating fluids. Cambridge University Press, New York

    MATH  Google Scholar 

  4. Pierrehumbert RT (1986) Universal short-wave instability of two-dimensional eddies in an inviscid fluid. Phys Rev Lett 57:2157–2160

    Article  ADS  Google Scholar 

  5. Bayly BJ (1986) Three-dimensional instability of elliptical flow. Phys Rev Lett 57:2160–2163

    Article  ADS  MathSciNet  Google Scholar 

  6. Bayly BJ (1988) Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys Fluids 31:56–64

    Article  ADS  MATH  Google Scholar 

  7. Landman MJ, Saffman PG (1987) The three-dimensional instability of strained vortices in a viscous fluid. Phys Fluids 30:2339–2342

    Article  ADS  Google Scholar 

  8. Giannetti F, Camarri S, Luchini P (2010) Structural sensitivity of the secondary instability in the wake of a circular cylinder. J Fluid Mech 651:319–337

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Rieper F, Achatz U, Klein R (2013) Range of validity of an extended WKB theory for atmospheric gravity waves: one-dimensional and two-dimensional case. J Fluid Mech 729:330–363

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Miyazaki T (1993) Elliptical instability in a stably stratified rotating fluid. Phys Fluids A 5:2702–2709

    Article  ADS  MATH  Google Scholar 

  11. Mizerski KA, Lyra W (2012) On the connection between the magneto-elliptic and magneto-rotational instabilities. J Fluid Mech 698:358–373

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Sipp D, Jacquin L (2000) Three-dimensional centrifugal-type instabilities of two-dimensional flows in rotating systems. Phys Fluids 12:1740–1748

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Drazin PG, Ried WH (1981) Hydrodynamic stability. Cambridge University Press, Cambridge

    Google Scholar 

  14. Le Dizès S, Lacaze L (2005) An asymptotic description of vortex Kelvin modes. J Fluid Mech 542:69–96

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Lundgren TS, Mansour NM (1996) Transition to turbulence in an elliptic vortex. J Fluid Mech 307:4362

    Article  MathSciNet  MATH  Google Scholar 

  16. Sipp D, Jacquin L (1998) Elliptical instability of two-dimensional flattened Taylor–Green vortices. Phys Fluids 10:839–849

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Le Dizès S, Laporte F (2002) Theoretical predictions for the elliptical instability in a two-vortex flow. J Fluid Mech 471:169–201

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Gallaire F, Marquillie M, Ehrenstein U (2007) Three-dimensional transverse instabilities in detached boundary layers. J Fluid Mech 571:221–233

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Citro V, Giannetti F, Brandt L, Luchini P (2015) Linear three-dimensional global and asymptotic stability analysis of incompressible open cavity flow. J Fluid Mech 768:113–140

    Article  ADS  MATH  Google Scholar 

  20. Giannetti F (2015) WKBJ analysis in the periodic wake of a cylinder. Theor Appl Mech Lett 5:107–110

  21. Schmid PJ, Henningson DS (2001) Stability and transition in shear flows. Springer, New York

    Book  MATH  Google Scholar 

  22. Orr WMF (1907) The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part I: a perfect liquid. Proc R Irish Acad Sect A 27:968

  23. Landahl MT (1980) A note on an algebraic instability of inviscid parallel shear flows. J Fluid Mech 98:243251

    Article  MathSciNet  Google Scholar 

  24. Rodrigues SB (1999) Plane wave analysis of shear flows. PhD Thesis, New York University, New York

  25. Waleffe F (1997) On a self-sustaining process in shear flows. Phys Fluids 9:883–900

    Article  ADS  Google Scholar 

  26. Rodrigues SB, De Luca J (2009) Weakly nonlinear analysis of short-wave elliptical instability. Phys Fluids 21:014108

    Article  ADS  MATH  Google Scholar 

  27. Kevorkian J, Cole JD (1981) Perturbation methods in applied mathematics. Springer, Berlin

    Book  MATH  Google Scholar 

  28. Bian N, Tsiklauri D (2008) Mixing shear Alfven wave packets. Astron Astrophys 489:1291–1295

    Article  ADS  Google Scholar 

  29. Rhins PB, Young WR (1983) How rapidly is a passive scalar mixed within closed streamlines? J Fluid Mech 133:133–145

    Article  ADS  Google Scholar 

  30. Landau L (1946) On the vibration of the electronic plasma. J Phys USSR 10:25

    MathSciNet  MATH  Google Scholar 

  31. Waleffe FA (1990) On the three-dimensional instability of strained vortices. Phys Fluids A 2:76–80

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Sipp D, Lauga E, Jacquin L (1999) Vortices in rotating systems: centrifugal, elliptic and hyperbolic type instabilities. Phys Fluids 11:3716–3728

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Le Dizès S (2000) Three-dimensional instability of a multipolar vortex in a rotating flow. Phys Fluids 12:2762–2774

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Saad Y (2003) Iterative methods for sparse linear systems. Society for Industrial and Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  35. Foures DPG, Caulfield CP, Schmid PJ (2013) Localization of flow structures using \(\infty \)-norm optimization. J Fluid Mech 729:672–701

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to acknowledge the effort of Danillo Cafaldo dos Reis in the initial development of the DNS code and the support provided by CNPq (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sávio B. Rodrigues.

Appendix: A second-order WKBJ system

Appendix: A second-order WKBJ system

Here is a summary of equations and quantities comprising the second-order WKBJ system as derived in Sect. 2:

$$\begin{aligned}&\frac{\text {d}\xi _j}{\text {d}t} = U_j(\xi (t),t), \end{aligned}$$
(40)
$$\begin{aligned}&D_t k_j + \partial _j U_\mathrm{s} k_\mathrm{s} = 0, \end{aligned}$$
(41)
$$\begin{aligned}&D_t u_j^0 + u_\mathrm{s}^0\partial _\mathrm{s} U_j + i k_j p^0 +\nu k_\mathrm{s}^2 u_j^0 =0, \end{aligned}$$
(42)
$$\begin{aligned}&D_t \partial _l k_j + \partial _l\partial _j U_\mathrm{s} k_\mathrm{s} + \partial _j U_\mathrm{s} \partial _l k_\mathrm{s} + \partial _l U_\mathrm{s}\partial _\mathrm{s} k_j = 0, \end{aligned}$$
(43)
$$\begin{aligned}&D_t \partial _\mathrm{s} u_j^0 +( \partial _\mathrm{s} U_l \partial _l u_j^0 + \partial _\mathrm{s} u_l^0 \partial _l U_j + u_l^0 \partial ^2_{ls} U_j + i \partial _\mathrm{s} k_j p^0 + i k_j \partial _\mathrm{s} p^0) +\nu (2 k_m \partial _\mathrm{s} k_m u_j^0 + k_m^2 \partial _\mathrm{s} u_j^0)=0, \end{aligned}$$
(44)
$$\begin{aligned}&D_t u_j^1 + u_\mathrm{s}^1\partial _\mathrm{s} U_j + i k_j p^1 + \nu k_\mathrm{s}^2 u_j^1 -\nu ( 2i k_\mathrm{s} \partial _\mathrm{s} u_j^0 + i \partial _\mathrm{s} k_\mathrm{s} u_j^0) + \partial _j p^0 = 0, \end{aligned}$$
(45)

with auxiliary quantities

$$\begin{aligned}&i p^0 = - 2\frac{u_\mathrm{s}^0\partial _\mathrm{s} U_l k_l}{k_j^2}, \end{aligned}$$
(46)
$$\begin{aligned}&i\partial _j p^0 = -\frac{2}{k^2_m}\left( \partial _j u_\mathrm{s}^0 \partial _\mathrm{s} U_l k_l + u^0_\mathrm{s} \partial ^2_{sj} U_l k_l + u_\mathrm{s}^0\partial _\mathrm{s} U_l \partial _j k_l - 2 \frac{u_\mathrm{s}^0\partial _\mathrm{s} U_l k_l k_n \partial _j k_n}{k^2_m}\right) , \end{aligned}$$
(47)
$$\begin{aligned}&d^0=D_t \partial _\mathrm{s} u_\mathrm{s}^0, \end{aligned}$$
(48)
$$\begin{aligned}&g^0 = \frac{1}{k_j^2}\left[ - id^0 - k_j\partial _j p^0 + \nu (- i k_m^2 \partial _\mathrm{s} u_\mathrm{s}^0 + 2 i k_m \partial _m u^0_\mathrm{s} k_\mathrm{s}) \right] , \end{aligned}$$
(49)
$$\begin{aligned}&i p^1 = - 2\frac{u^1_\mathrm{s}\partial _\mathrm{s} U_l k_l}{k_j^2} + g^0. \end{aligned}$$
(50)

The numerical parameters defining the wave packet initial condition, Sect. 4, are such that the first- and the second-order WKBJ systems have a periodic solution when \({\mathbf x}(0)\) is the center point of TG. The precise numerical values are as follows:

$$\begin{aligned} {\mathbf k}_0= & {} \left[ \begin{array}{ccc} 0.7844596616145115&0&0.6201798443190862 \end{array} \right] , \\ {\mathbf A}_0= & {} \left[ \begin{array}{ccc} -0.4864248482200599&-0.6203454662863631&0.6152742230030823 \end{array} \right] ,\\ \nu= & {} 0.3124614521468088. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, S.B. Second-order high-frequency approximation of inertial waves in viscous flows and its validity on different time scales. J Eng Math 106, 1–21 (2017). https://doi.org/10.1007/s10665-016-9890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-016-9890-6

Keywords

Navigation