Skip to main content
Log in

Exact stiffness matrix for nonlocal bars embedded in elastic foundation media: the virtual-force approach

  • Published:
Journal of Engineering Mathematics Aims and scope Submit manuscript

Abstract

This paper proposes a solution to the exact bar-foundation element that includes the bar nonlocal effect. The exact element stiffness matrix and fixed-end force vector are derived based on the exact element flexibility equation using the so-called natural approach. The virtual-force principle is employed to work out the governing differential compatibility equation as well as the associated end-boundary compatibility conditions. Exact force interpolation functions are used to derive the exact element flexibility equation and can be obtained as the analytical solution of the governing differential compatibility equation of the problem. A numerical example of a nanowire-elastic substrate system is used to verify the accuracy and efficiency of the natural nonlocal bar-foundation model and to demonstrate the superiority over its counterpart, a displacement-based model. The effects of material nonlocality on the system responses are also discussed in the example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Helical nanotubes of graphitic carbon. Nature 354(6348):56–58

    Article  ADS  Google Scholar 

  2. Bhushan B (2010) Springer handbook of nanotechnology, 3rd edn. Springer, New York

    Book  Google Scholar 

  3. Tounsi A, Benguediab S, Bedia EAA, Semmah A, Zidour M (2013) Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv Nano Res 1(1):1–11

    Article  Google Scholar 

  4. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76(14):2511–2514

    Article  ADS  Google Scholar 

  5. Wang CZ, Ho KM (1996) Tight-binding molecular dynamics for materials simulations. J Comput-Aided Mater 3(1–3):139–148

    Article  Google Scholar 

  6. Frink LJD, Salinger AG, Sears MP, Weinhold JD, Frischknecht AL (2002) Numerical challenges in the application of density functional theory to biology and nanotechnology. J Phys-Condens Mat 14(46):12167–12187

    Article  ADS  Google Scholar 

  7. Wang Q, Varadan VK (2005) Stability analysis of carbon nanotubes via continuum models. Smart Mater Struct 14(1):281–286

    Article  ADS  Google Scholar 

  8. Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    Article  MATH  MathSciNet  Google Scholar 

  9. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  ADS  Google Scholar 

  10. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  11. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MATH  MathSciNet  Google Scholar 

  12. Peddieson J, Buchanan GR, McNitt RP (2003) Application of nonlocal continuum models to nanotechnology. Int J Eng Sci 41(3–5):305–312

    Article  Google Scholar 

  13. Wang CM, Zhang YY, Sudha S, Kitipornchai S (2006) Buckling analysis of micro- and nano-rods/tubes based on nonlocal Timoshenko beam theory. J Phys D Appl Phys 39(17):3904–3909

    Article  ADS  Google Scholar 

  14. Reddy JN (2007) Nonlocal theories for bending, buckling, and vibration of beams. Int J Eng Sci 45(2–8):288–307

    Article  MATH  Google Scholar 

  15. Juntarasaid C, Pulngern T, Chucheepsakul S (2012) Bending and buckling of nanowires including the effects of surface stress and nonlocal elasticity. Physica E 46:69–76

    Article  ADS  Google Scholar 

  16. Poulos HG, Davis EH (1980) Pile foundation analysis and design. Wiley, New York

    Google Scholar 

  17. Cui Y, Zhong Z, Wang D, Wang WU, Lieber CM (2003) High performance silicon nanowire field effect transistors. Nano Lett 3(2):149–152

    Article  ADS  Google Scholar 

  18. Wang ZL, Song J (2006) Piezoelectric nanogenerators based on Zinc Oxide nanowire arrays. Science 312(5771):242–246

    Article  ADS  Google Scholar 

  19. Feng XL, He R, Yang P, Roukes ML (2007) Very high frequency silicon nanowire electromechanical resonators. Nano Lett 7(7):1953–1959

    Article  ADS  Google Scholar 

  20. Argyris JH, Kelsey S (1960) Energy theorems and structural analysis. Butterworths & Co Ltd., London

    Book  Google Scholar 

  21. Limkatanyu S, Kuntiyawichai K, Spacone E, Kwon M (2012) Natural stiffness matrix for beams on Winkler foundation: exact force-based derivation. Struct Eng Mech 42(1):39–53

    Article  Google Scholar 

  22. Limkatanyu S, Damrongwiriyanupap N, Kwon M, Ponbunyanon P (2013) Force-based derivation of exact stiffness matrix for beams on Winkler-Pasternak foundation. Z Angew Math Mech. doi:10.1002/zamm.201300030

  23. Limkatanyu S, Prachasaree W, Damrongwiriyanupap N, Kwon M, Jung W (2013) Exact stiffness for beams on Kerr-Type foundation: the virtual force approach. J Appl Math 2013: 626287

  24. Limkatanyu S, Damrongwiriyanupap N, Prachasaree W, Sae-Long W (2013) Modeling of axially loaded nanowire embedded in elastic substrate media including nonlocal and surface effects. J Nanomater 2013: 635428

  25. Wolfram S (1992) Mathematica reference guide. Addison-Wesley Publishing Company, Redwood City

    Google Scholar 

  26. Yang Y, Lim CW (2012) Non-classical stiffness strengthening size effects for free vibration of a nonlocal nanostructure. Int J Mech Sci 54(1):57–68

    Article  Google Scholar 

  27. Scott RF (1981) Foundation analysis. Prentice-Hall International Inc., London

    Google Scholar 

  28. Kreyszig E (1993) Advanced engineering mathematics, 7th edn. Wiley, New York

    MATH  Google Scholar 

  29. Limkatanyu S, Spacone E (2002) R/C Frame element with bond interfaces-part 1: displacement-based, force-based and mixed formulations. J Struct Eng-ASCE 128(3):346–355

    Article  Google Scholar 

  30. Limkatanyu S, Spacone E (2006) Frame element with lateral deformable supports: formulation and numerical validation. Comput Struct 84(13–14):942–954

    Article  Google Scholar 

  31. He J, Lilley CM (2008) Surface effect on the elastic behavior of static bending nanowires. Nano Lett 8(7):1798–1802

    Article  ADS  Google Scholar 

  32. Liew KW, He XQ, Kitipornchai S (2006) Predicting nanovibration of multi-layer grapheme sheets embedded in an elastic matrix. Acta Mater 54(16):4229–4236

    Article  Google Scholar 

  33. Zhaohua F, Cook RD (1983) Beam elements on two-parameter elastic foundations. J Eng Mech ASCE 109(3):1390–1401

    Article  Google Scholar 

  34. Ting BY, Mockry EF (1984) Beam on elastic foundation finite elements. J Struct Div-ASCE 110(10):2324–2339

    Article  Google Scholar 

  35. Razaqpur AG, Shah KR (1991) Exact analysis of beams on two-parameter elastic foundations. Int J Solids Struct 27(4):435–454

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This study was partially supported by the Thailand Research Fund (TRF) under Grants MRG4680109 and RSA5480001 and by the STREAM Research Group under Grant ENG-51-2-7-11-022-S, Faculty of Engineering, Prince of Songkla University. Any opinions expressed in this paper are those of the authors and do not reflect the views of the sponsoring agencies. Special thanks go to senior lecturer Mr Wiwat Sutiwipakorn for reviewing and correcting the English in the paper. In addition, the authors would like to thank two anonymous reviewers for their valuable and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchart Limkatanyu.

Appendices

Appendix 1: Axial-force interpolation functions, foundation-force interpolation functions, and nodal displacements due to \(p_x (x)\)

The axial-force interpolation functions may be written as

$$\begin{aligned} N_{\textit{BB}1} (x)=\frac{1}{2}\Big ( {\mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda ( {2L-x} )}} \Big )\Big ( {\coth \lambda L-1} \Big ), \quad N_{BB2} (x)=\frac{\sinh \lambda x}{\sinh \lambda L}. \end{aligned}$$

The foundation-force interpolation functions may be written as

$$\begin{aligned} N_{sB1} (x)=\frac{\lambda }{2}\Big ( {\mathrm{e}^{\lambda x}+\mathrm{e}^{\lambda ( {2L-x} )}} \Big )\Big ( {\coth \lambda L-1} \Big ), \quad N_{sB2} (x)=\frac{\lambda \cosh \lambda x}{\sinh \lambda L}. \end{aligned}$$

The second derivative of the axial-force interpolation functions may be written as

$$\begin{aligned} \begin{array}{l} \displaystyle \frac{\mathrm{d}^{2}N_{BB1} (x)}{\mathrm{d}x^{2}}=\frac{\lambda ^{2}}{2}\Big ( {\mathrm{e}^{\lambda x}-\mathrm{e}^{\lambda ( {2L-x} )}} \Big )\Big ( {\coth \lambda L-1} \Big ) \quad \frac{\mathrm{d}^{2}N_{BB2} (x)}{\mathrm{d}x^{2}}=\frac{\lambda ^{2}\sinh \lambda x}{\sinh \lambda L}. \\ \end{array} \end{aligned}$$

The nodal displacements due to the uniformly distributed load \(p_x (x)=p_{x0} \) may be written as

$$\begin{aligned} U_{1p_x } =\frac{p_{x0} }{k_s }\quad \hbox {and}\quad U_{2p_x } =\frac{p_{x0} }{k_s }. \end{aligned}$$

Appendix 2: Nonlocal bar embeded in elastic foundation flexibility matrix

The bar contribution to the element flexibility matrix may be written as

$$\begin{aligned} \mathbf{F}_{\textit{BB}}&= \Bigg ( {{\begin{array}{l@{\quad }l} {F_{11}^{BB} }&{} {F_{12}^{BB} } \\ \mathrm{symm.}&{} {F_{22}^{BB} } \\ \end{array} }} \Bigg ) \end{aligned}$$

where

$$\begin{aligned} F_{11}^{BB}&= F_{22}^{BB} =\frac{1}{2EA}\Bigg ( {\frac{\coth \lambda L}{\lambda }-\frac{L}{\sinh ^{2}\lambda L}} \Bigg ),\\ F_{12}^{BB}&= F_{21}^{BB} =\frac{1}{2EA\sinh \lambda L}\Bigg ( {\frac{1}{\lambda }-\frac{L}{\tanh \lambda L}} \Bigg ). \end{aligned}$$

The foundation contribution to the element flexibility matrix may be written as

$$\begin{aligned} \mathbf{F}_{ss}&= \Bigg ( {{\begin{array}{l@{\quad }l} {F_{11}^{ss} }&{} {F_{12}^{ss} } \\ \mathrm{symm.}&{} {F_{22}^{ss} } \\ \end{array} }} \Bigg ) \end{aligned}$$

where

$$\begin{aligned} F_{11}^{ss}&= F_{22}^{ss} =\frac{\lambda ^{2}}{2k_s }\Bigg ( {\frac{\coth \lambda L}{\lambda }+\frac{L}{\sinh ^{2}\lambda L}}\Bigg ),\\ F_{12}^{ss}&= F_{21}^{ss} =\frac{\lambda }{2k_s \sinh \lambda L}\Bigg ( {1+\frac{\lambda L}{\tanh \lambda L}} \Bigg ). \end{aligned}$$

The nonlocal contribution to the element flexibility matrix may be written as

$$\begin{aligned} \mathbf{F}_{\textit{BB}}^\mathrm{Nonlocal}&= \Bigg ( {{\begin{array}{l@{\quad }l} {F_{11}^\mathrm{Nonlocal} }&{} {F_{12}^\mathrm{Nonlocal} } \\ \mathrm{symm.}&{} {F_{22}^\mathrm{Nonlocal} } \\ \end{array} }} \Bigg ) \end{aligned}$$

where

$$\begin{aligned} F_{11}^\mathrm{Nonlocal}&= F_{22}^\mathrm{Nonlocal} =\frac{\lambda ( {\mathrm{e}_0 a} )^{2}}{2EA}\Bigg ( {\coth \lambda L-\frac{\lambda L}{\sinh ^{2}\lambda L}} \Bigg ),\\ F_{12}^\mathrm{Nonlocal}&= F_{21}^\mathrm{Nonlocal} =\frac{\lambda ( {\mathrm{e}_0 a} )^{2}}{2EA\sinh \lambda L}\Bigg ( {1-\frac{\lambda L}{\tanh \lambda L}} \Bigg ). \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Limkatanyu, S., Prachasaree, W., Damrongwiriyanupap, N. et al. Exact stiffness matrix for nonlocal bars embedded in elastic foundation media: the virtual-force approach. J Eng Math 89, 163–176 (2014). https://doi.org/10.1007/s10665-014-9707-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10665-014-9707-4

Keywords

Navigation