Skip to main content

Advertisement

Log in

Availability of geogenic heavy metals in soils of Thiva town (central Greece)

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Potentially toxic metals in the urban chemical environment impose risks to both ecosystem and human health. Here, we evaluate the labile pools and availabilities of non-anthropogenic Ni, Cr, Co and Mn in soil samples from Thiva town (central Greece) and investigate their associations with common soil properties and geochemical data obtained by the aqua regia and single selective dissolutions. Experimental work included the initial application of the sequential extraction protocol proposed by the European Community Bureau of Reference and chemical extractions with ethylenediamine tetraacetic acid solution and a modified physiologically based extraction test with the aim to obtain the operationally defined fractions of plant availability and human bioaccessibility, respectively. The leachate results demonstrated that despite the significant contribution of residual metal species especially for Ni and Cr, the studied serpentine soils provide chemically labile pools for all the considered elements. Nickel was found to be the most available metal with the order being Ni > Cr ∼ Co ∼ Mn for plant uptake and Ni > Cr > Co ∼ Mn for human bioaccessibility. The aqua regia extractable concentrations are not predictors of elemental availabilities except for Ni bioaccessible data interpreting however only a moderate percentage of the total variance. The incorporation of basic soil properties (mostly total organic carbon), geochemical data for the major elements Ca, Mg and Fe and ammonium oxalate extractable Cr significantly improved the estimations for individual elements entailing the strong influence of the chemistry and mineralogy of soil materials to the release of focus metals from the soil matrix. This study provides for the first time bioaccessible data for serpentine-derived soils that are more realistic for evaluating potential adverse effects on the human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abrahams, P. W. (2012). Involuntary soil ingestion and geophagia: A source and sink of mineral nutrients and potentially harmful elements to consumers of earth materials. Applied Geochemistry, 27, 954–968.

    Article  CAS  Google Scholar 

  • Adamo, P., & Zampella, M. (2008). Chemical speciation to assess potentially toxic metals’ (PTMs’) bioavailability and geochemical forms in polluted soils. In B. De Vivo, H. E. Belkin, & A. Lima (Eds.), Environmental geochemistry: Site characterization, data analysis and case histories (pp. 175–212). The Netherlands: Elsevier.

    Google Scholar 

  • Alves, S., Trancoso, M. A., Goncalves, M., & Correia dos Santos, M. M. (2011). A nickel availability study in serpentinized areas of Portugal. Geoderma, 164, 155–163.

    Article  CAS  Google Scholar 

  • Antibachi, D., Kelepertzis, E., & Kelepertsis, A. (2012). Heavy metals in agricultural soils of the Mouriki-Thiva area (central Greece) and environmental impact implications. Soil and Sediment Contamination, 21, 434–450.

    Article  CAS  Google Scholar 

  • Appleton, J. D., Cave, M. R., & Wragg, J. (2012a). Anthropogenic and geogenic impacts on arsenic bioaccessibility in UK topsoils. Science of the Total Environment, 435–436, 21–29.

    Article  Google Scholar 

  • Appleton, J. D., Cave, M. R., & Wragg, J. (2012b). Modelling lead bioaccessibility in urban topsoils based on data from Glasgow, London, Northampton and Swansea, UK. Environmental Pollution, 171, 265–272.

    Article  CAS  Google Scholar 

  • Arshad, M. A., Arnaud, R. J. S. T., & Huang, P. M. (1972). Dissolution of trioctahedral layer silicates by acid ammonium oxalate, sodium-dithionite-citrate-bicarbonate and potassium pyrophosphate. Canadian Journal of Soil Science, 52, 19–26.

    Article  CAS  Google Scholar 

  • Barsby, A., McKinley, J. M., Ofterdinger, U., Young, M., Cave, M. R., & Wragg, J. (2012). Bioaccessibility of trace elements in soils in Northern Ireland. Science of the Total Environment, 433, 398–417.

    Article  CAS  Google Scholar 

  • Becquer, T., Quantin, C., Rotte-Capet, S., Ghanbaja, J., Mustin, C., & Herbillon, A. J. (2006). Sources of trace metals in New Caledonia. European Journal of Soil Science, 57, 200–213.

    Article  CAS  Google Scholar 

  • Broadway, A., Cave, M. R., Wragg, J., Fordyce, F. M., Bewley, R. J. F., Graham, M. C., et al. (2010). Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Science of the Total Environment, 409, 261–277.

    Article  Google Scholar 

  • Bulmer, C. E., & Lavkulich, L. M. (1994). Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Columbia. Canadian Journal of Soil Science, 74, 165–177.

    Article  CAS  Google Scholar 

  • Chao, T. T. (1972). Selective dissolution of manganese oxides from soils and sediments with acidified hydroxylamine hydrochloride. Soil Science Society of America Proceedings, 36, 764–768.

    Article  Google Scholar 

  • Chao, T. T., & Theobald, P. K. (1976). The significance of secondary iron and manganese oxides in geochemical exploration. Economic Geology, 71, 1560–1569.

    Article  CAS  Google Scholar 

  • Cheng, C.-H., Jien, S.-H., Iizuka, Y., Tsai, H., Chang, H., & Hseu, Z.-Y. (2011). Pedogenic chromium and nickel partitioning in serpentine soils along a toposequence. Soil Science Society of America Journal, 75, 659–668.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Duncan, A. L., Littlejohn, D., Ure, A. M., & Garden, L. M. (1998). A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated soils. Analytica Chimica Acta, 363, 45–55.

    Article  CAS  Google Scholar 

  • Davidson, C. M., Urquhart, G. J., Ajmone-Marsan, F., Biasioli, M., Duarte, A., Díaz-Barrientos, E., et al. (2006). Fractionation of potentially toxic elements in urban soils fron five European cities by means of a harmonised sequential extraction procedure. Analytica Chimica Acta, 565, 63–72.

    Article  CAS  Google Scholar 

  • Davis, H. T., Aelion, M., McDermott, S., & Lawson, A. B. (2009). Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environmental Pollution, 157, 2378–2385.

    Article  CAS  Google Scholar 

  • De Miguel, E., Mingot, J., Chacón, E., & Charlesworth, S. (2012). The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environmental Geochemistry and Health, 34, 677–687.

    Article  CAS  Google Scholar 

  • Fendorf, S., La Force, M. J., & Li, G. (2004). Temporal changes in soil partitioning and bioaccessibility of arsenic, chromium and lead. Journal of Environmental Quality, 33, 2049–2055.

    Article  CAS  Google Scholar 

  • Galanos, E. (2011). Investigation of the distribution of the toxic elements Ni and Cr in soils of Eleonas, Ypato and Stavrodromi areas (Thiva basin). MSc Dissertation, University of Athens, Department of Geology and Geoenvironment.

  • Gasser, U. G., Juchler, S. J., Hobson, W. A., & Sticher, H. (1995). The fate of chromium and nickel in subalpine soils derived from serpentine. Canadian Journal of Soil Science, 75, 187–195.

    Article  CAS  Google Scholar 

  • Guillén, M. T., Delgado, J., Albanese, S., Nieto, J. M., Lima, A., & De Vivo, B. (2012). Heavy metals fractionation and multivariate statistical techniques to evaluate the environmental risk in soils of Huelva Township (SW Iberian Peninsula). Journal of Geochemical Exploration, 119–120, 32–43.

    Article  Google Scholar 

  • Hendershot, W. H., Lalande, H., & Duquette, M. (2006). Ion exchange and exchangeable cations. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and method of analysis (2nd ed., pp. 197–206). Boca Raton, Florida: CRC Press, Taylor and Francis Group.

    Google Scholar 

  • Hseu, Z.-Y. (2006). Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence. Soil Science, 171, 341–353.

    Article  CAS  Google Scholar 

  • Hsiao, K. H., Bao, K. H., Wang, S. H., & Hseu, Z. Y. (2009). Extractable concentrations of cobalt from serpentine soils with several single-extraction procedures. Communications in Soil Science and Plant Analysis, 40, 2200–2224.

    Article  CAS  Google Scholar 

  • Kelepertzis, E., Galanos, E., & Mitsis, I. (2013). Origin, mineral speciation and geochemical baseline mapping of Ni and Cr in agricultural topsoils of Thiva valley (central Greece). Journal of Geochemical Exploration, 125, 56–68.

    Article  CAS  Google Scholar 

  • Kierczak, J., Neel, C., Aleksander-Kwaterczak, U., Helios-Rybicka, E., Bril, H., & Puziewicz, J. (2008). Solid speciation and mobility of potentially toxic elements from natural and contaminated soil: A combined approach. Chemoshpere, 73, 776–784.

    Article  CAS  Google Scholar 

  • Li, X., Lee, S.-I., Wong, S.-c., Shi, W., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution, 129, 113–124.

    Article  CAS  Google Scholar 

  • Ljung, K., Selinus, O., & Otabbong, E. (2006). Metals in soils of children’s urban environments in the small northern European city of Uppsala. Science of the Total Environment, 366, 749–759.

    Article  CAS  Google Scholar 

  • Lu, Y., Zhu, F., Chen, J., Gan, H., & Guo, Y. (2007). Chemical fractionation of heavy metals in urban soils of Guangzhou, China. Environmental Monitoring and Assessment, 134, 429–439.

    Article  CAS  Google Scholar 

  • Luo, X.-s., Yu, S., & Li, X.-d. (2011). Distribution, availability, and sources of trace metals in different size fractions of urban soils in Hong-Kong: Implications for assessing the risk to human health. Environmental Pollution, 159, 1317–1326.

    Article  CAS  Google Scholar 

  • Luo, X.-s., Yu, S., & Li, X.-d. (2012). The mobility, bioavailability and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry, 27, 995–1004.

    Article  CAS  Google Scholar 

  • Madrid, F., Reinoso, R., Florido, M. C., Díaz Barrientos, E., Ajmone-Marsan, F., Davidson, C. M., et al. (2007). Estimating the extractability of potentially toxic metals in urban soils: A comparison of several extracting solutions. Environmental Pollution, 147, 713–722.

    Article  CAS  Google Scholar 

  • Madrid, F., Biasioli, M., & Ajmone-Marsan, F. (2008). Availability and bioaccessibility of metals in fine particles of some urban soils. Archives of Environmental Contamination and Toxicology, 55, 21–32.

    Article  CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. The Science of the Total Environment, 300, 229–243.

    Article  CAS  Google Scholar 

  • Massoura, S. T., Echevarria, G., Becquer, T., Ghanbaja, J., Leclerc-Cessac, E., & Morel, J.-L. (2006). Control of nickel availability by nickel bearing minerals in natural and anthropogenic soils. Geoderma, 136, 28–37.

    Article  CAS  Google Scholar 

  • Mehra, O. P., & Jackson, M. L. (1960). Iron oxide removal from soils and clays by dithionite-citrate system buffered with sodium bicarbonate. Clays and Clays Minerals, 7, 317–327.

    Article  Google Scholar 

  • Möller, A., Müller, H. W., Abdullan, A., Abdelgawad, G., & Utermann, J. (2005). Urban soil pollution in Damascus, Syria: Concentrations and patterns of heavy metals in the soils of Damascus Ghouta. Geoderma, 124, 63–71.

    Article  Google Scholar 

  • Morman, S. A., Plumlee, G. S., & Smith, D. B. (2009). Application of in vitro extraction studies to evaluate element bioaccessibility in soils from a transect across the United States and Canada. Applied Geochemistry, 24, 1454–1463.

    Article  CAS  Google Scholar 

  • Neaman, A., Mouélé, F., Trolard, F., & Bourrié, G. (2004). Improved methods for selective dissolution of Mn oxides: Applications for studying trace element associations. Applied Geochemistry, 19, 973–979.

    Article  CAS  Google Scholar 

  • Oomen, A. G., Hack, A., Minekus, M., Zeijdner, E., Cornelis, C., Schoeters, G., et al. (2002). Comparison of five in vitro digestion models to study then bioaccessibility of soil contaminants. Environmental Science and Technology, 36, 3326–3334.

    Article  CAS  Google Scholar 

  • Oze, C., Fendorf, S., Bird, D. K., & Coleman, R. G. (2004). Chromium geochemistry of serpentine soils. International Geology Reviews, 46, 97–126.

    Article  Google Scholar 

  • Palumbo-Roe, B., Cave, M. R., Klinck, B. A., Wragg, J., Taylor, H., O’Donnell, K. E., et al. (2005). Bioaccessibility of arsenic in soils developed over Jurassic limestones in eastern England. Environmental Geochemistry and Health, 27, 121–130.

    Article  CAS  Google Scholar 

  • Pelfrȇne, A., Waterlot, C., Mazzuca, M., Nisse, C., Bidar, G., & Douay, F. (2011). Assessing Cd, Pb and Zn human bioaccessibility in smelter-contaminated agricultural topsoils (northern France). Environmental Geochemistry and Health, 33, 477–493.

    Article  Google Scholar 

  • Pérez-López, R., Álvarez-Valero, A. M., Nieto, J. M., Sáez, R., & Matos, J. X. (2008). Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt). Applied Geochemistry, 23, 3452–3463.

    Article  Google Scholar 

  • Poggio, L., Vrščaj, B., Schulin, R., Hepperle, E., & Marsan, F. A. (2009). Metals pollution and human bioaccessibility of topsoils in Grugliasco (Italy). Environmental Pollution, 157, 680–689.

    Article  CAS  Google Scholar 

  • Quantin, C., Ettler, V., Garnier, J., & Šebek, O. (2008). Sources and extractability of chromium and nickel in soil profiles developed on Czech serpentinites. Comptes Rendus Geosciences, 340, 872–882.

    Article  CAS  Google Scholar 

  • Quevauviller, P., Rauret, G., Rubio, R., López-Sánchez, J.-F., Ure, A., Bacon, J., et al. (1997). Certified reference materials for the quality control of EDTA-and acetic acid-extractable contents of trace elements in sewage sludge amended soils (CRMs 483 and 484). Fresenius’ Journal of Analytical Chemistry, 357, 611–618.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Oze, C., Bandara, W. M. A. T., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189–190, 1–9.

    Article  Google Scholar 

  • Ramos-Miras, J. J., Roca-Perez, L., Guzmán-Palomino, M., Boluda, R., & Gil, C. (2011). Background levels and baseline values of available heavy metals in Mediterranean green house soils (Spain). Journal of Geochemical Exploration, 110, 186–192.

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A. M., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

    Article  CAS  Google Scholar 

  • Rodrigues, S., Urquhart, G., Hossack, I., Pereira, M. A., Duarte, A. C., Davidson, C., et al. (2009). The influence of anthropogenic and natural geochemical factors on urban soil quality variability: A comparison between Glasgow, UK and Aveiro, Portugal. Environmental Chemistry Letters, 7, 141–148.

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Henriques, B., Ferreira da Silva, E., Pereira, M. E., Duarte, A. C., & Römkens, P. F. A. M. (2010). Evaluation of an approach for the characterization of reactive and available pools of twenty potentially toxic elements in soils: Part I—The role of key soil properties in the variation of contaminants’ reactivity. Chemosphere, 81, 1549–1559.

    Article  CAS  Google Scholar 

  • Rodrigues, S. M., Cruz, N., Coelho, C., Henriques, B., Carvalho, L., Duarte, A. C., et al. (2013). Risk assessment for Cd, Cu, Pb, and Zn in urban soils: Chemical availability as the central concept. Environmental Pollution. doi:10.1016.j.envpol.2012.10.006.

    Google Scholar 

  • Rodriguez, R. R., Basta, N. T., Casteel, S. W., & Pace, L. W. (1999). An in vitro gastrointestinal method to estimate bioavailable arsenic in contaminated soils and solid media. Environmental Science and Technology, 33, 642–649.

    Article  CAS  Google Scholar 

  • Roussel, H., Waterlot, C., Pelfrȇne, A., Pruvot, C., Mazzuca, M., & Douay, F. (2010). Cd, Pb and Zn oral bioaccessibility of urban soils contaminated in the past by atmospheric emissions from two lead and zinc smelters. Archives of Environmental Contamination and Toxicology, 58, 945–954.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Davis, A., Schoof, R., & Eberle, S. S. C. M. (1996). Estimation of lead and arsenic bioavailability using a physiologically based extraction test. Environmental Science and Technology, 30, 422–430.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33, 3697–3705.

    Article  CAS  Google Scholar 

  • Schwertmann, U. (1964). Differenzierung der Eisenoxide des Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung. Z Pflanzenernaehr Bodenkd, 105, 194–202.

    Article  CAS  Google Scholar 

  • Shi, G., Chen, Z., Xu, S., Zhang, J., Wang, L., Bi, C., et al. (2008). Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environmental Pollution, 156, 251–260.

    Article  CAS  Google Scholar 

  • Sialelli, J., Urquhart, J., Davidson, C. M., & Hursthouse, A. S. (2010). Use of a physiologically based extraction test to estimate the human bioaccessibility of potentially toxic elements in urban soils from the city of Glasgow, UK. Environmental Geochemistry and Health, 32, 517–527.

    Article  CAS  Google Scholar 

  • Sialelli, J., Davidson, C. M., Hursthouse, A. S., & Ajmone-Marsan, F. (2011). Human bioaccessibility of Cr, Cu, Ni, Pb and Zn in urban soils from the city of Torino, Italy. Environmental Chemistry Letters, 9, 197–202.

    Article  CAS  Google Scholar 

  • Stewart, M. A., Jardine, P. M., Barnett, M. O., Mehlhorn, T. L., Hyder, L. K., & McKay, L. D. (2003). Influence of soil geochemical and physical properties on the sorption and bioaccessibility of chromium (III). Journal of Environmental Quality, 32, 129–137.

    CAS  Google Scholar 

  • Thums, C. R., Farago, M. E., & Thornton, I. (2008). Bioavailability of trace metals in brownfield soils in an urban area in the UK. Environmental Geochemistry and Health, 30, 549–563.

    Article  CAS  Google Scholar 

  • Tziritis, E., Kelepertzis, E., Korres, G., Perivolaris, D., & Repani, S. (2012). Hexavalent chromium contamination in groundwaters of Thiva basin, central Greece. Bulletin of Environmental Contamination and Toxicology, 89, 1073–1077.

    Article  CAS  Google Scholar 

  • VROM (2000). Circular on target and intervention values for soil remediation. Dutch Ministry of Housing, Spatial Planning and the Environment (VROM).

  • Walkley, A., & Black, I. A. (1934). An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37, 29–37.

    Article  CAS  Google Scholar 

  • Wei, B., & Yang, L. (2010). A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchemical Journal, 94, 99–107.

    Article  CAS  Google Scholar 

  • Wong, C. S. C., Li, X., & Thornton, I. (2006). Urban environmental geochemistry of trace metals. Environmental Pollution, 142, 1–16.

    Article  CAS  Google Scholar 

  • Wragg, J., Cave, M., & Nathanail, P. (2007). A study of the relationship between arsenic bioaccessibility and its solid-phase distribution in soils from Wellingborough, UK. Journal of Environmental Science and Health, Part A, 42, 1303–1315.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The University of Athens (Laboratory of Economic Geology and Geochemistry and Laboratory of Environmental Chemistry) is gratefully acknowledged for providing analytical facilities for the accomplishment of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efstratios Kelepertzis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kelepertzis, E., Stathopoulou, E. Availability of geogenic heavy metals in soils of Thiva town (central Greece). Environ Monit Assess 185, 9603–9618 (2013). https://doi.org/10.1007/s10661-013-3277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-013-3277-1

Keywords

Navigation