Skip to main content
Log in

Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

This paper investigates the organic pollution status of shallow aquifer sediments and groundwater around Zhoukou landfill. Chlorinated aliphatic hydrocarbons, monocylic aromatic hydrocarbons, halogenated aromatic hydrocarbons, organochlorine pesticides and other pesticides, and polycyclic aromatic hydrocarbons (PAHs) have been detected in some water samples. Among the detected eleven PAHs, phenanthrene, fluorine, and fluoranthene are the three dominant in most of the groundwater samples. Analysis of groundwater samples around the landfill revealed concentrations of PAHs ranging from not detected to 2.19 μg/L. The results show that sediments below the waste dump were low in pollution, and the shallow aquifer, at a depth of 18–30 m, was heavily contaminated, particularly during the wet season. An oval-shaped pollution halo has formed, spanning 3 km from west to east and 2 km from south to north, and mainly occurs in groundwater depths of 2–4 m. For PAH source identification, both diagnostic ratios of selected PAHs and principal component analysis were studied, suggesting mixed sources of pyro- and petrogenic derived PAHs in the Zhoukou landfill. Groundwater table fluctuations play an important role in the distribution of organic pollutants within the shallow aquifer. A conceptual model of leachate migration in the Quaternary aquifers surrounding the Zhoukou landfill has been developed to describe the contamination processes based on the major contaminant (PAHs). The groundwater zone contaminated by leachate has been identified surrounding the landfill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Akyüz, M., & Çabuk, H. (2010). Gaseparticle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Science of the Total Environment, 408, 5550–5558.

    Article  Google Scholar 

  • APHA (1992). Standard methods for the examination of water and wastewater, 18th edn. Washington: American Public Health Association.

  • Basberg, L., Banks, D., & Saether, O. M. (1998). Redox processes in groundwater impacted by landfill leachate. Aquatic Geochemistry, 4, 253–272.

    Article  CAS  Google Scholar 

  • Baudoin, C., Charveron, M., Tarroux, R., & Gall, Y. (2002). Environmental pollutants and skin cancer. Cell Biology and Toxicology, 18, 341–348.

    Article  Google Scholar 

  • Baumard, P., Budzinski, H., & Garrigues, P. (1998). Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea. Environmental Toxicology and Chemistry, 17, 765–776.

    Article  CAS  Google Scholar 

  • Baumard, P., Budzinski, H., Michon, Q., Garrigues, P., Burgeot, T., & Bellocq, J. (1998). Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records. Estuarine Coastal and Shelf Science, 47, 77–90.

    Article  CAS  Google Scholar 

  • Borden, R. C., Gomez, C. A., & Becker, M. T. (1995). Geochemical indicators of intrinsic bioremediation. Ground Water, 33, 180–189.

    Article  CAS  Google Scholar 

  • Bosma, T. N. P., Harms, H., & Zehnder, J. B. (2001) Biodegradation of xenobiotics in the environment and technosphere. In B. Beek (Ed.), The handbook of environmental chemistry, Park K: biodegradation and persistence, vol. 63. Berlin: Springer.

  • Brigmon, R. L., Camper, D., & Stutzenberger, F. (2002). Bioremediation of compounds hazardous to health and the environment—an overview. In V. P. Singh & R. D. Stapleton (Eds.), Biotransformations: bioremediation technology for health and environmental protection (pp. 1–28). Amsterdam: Elsevier Science.

    Chapter  Google Scholar 

  • Budziński, H., Jones, I., Bellocq, J., Pierrad, C., & Garrigues, P. (1997). Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Marine Chemistry, 58, 85–97.

    Article  Google Scholar 

  • Cao, Z. H., Wang, Y. Q., Ma, Y. M., Xu, Z., Shi, G. L., Zhuang, Y. Y., et al. (2005). Occurrence and distribution of polycyclic aromatic hydrocarbons in reclaimed water and surface water of Tianjin, China. Journal of Hazardous Materials, A122, 51–59.

    Article  Google Scholar 

  • Chapman, D. (1992). Water quality assessments. A guide to the use of biota, sediments and water in environmental monitoring (pp. 371–460). London, UNESCO/WHO/UNEP, Chapman & Hall.

  • Christensen, T. H. (1992). Attenuation of leachate pollutants in groundwater, landfilling of waste. In T. H. Christensen, R. Cossu, & R. Stegmann (Eds.), Leachate (pp. 441–469). London: Elsevier Applied Science.

    Google Scholar 

  • Christensen, T. H., Kjeldsen, P., Bjerg, P. L., Jensen, D. L., Christensen, J. B., Baun, A., et al. (2001). Biogeochemistry of landfill leachate plumes. Applied Geochemistry, 16, 659–718.

    Article  CAS  Google Scholar 

  • Colombo, J. C., Barreda, A., Bilos, C., Cappelletti, N., Demichelis, S., & Lombardi, P. (2005a). Oil spill in the Rio de La Plata estuary, Argentina: 1. Biogeochemical assessment of waters, sediments, soils and biota. Environmental Pollution, 134, 277–289.

    Article  CAS  Google Scholar 

  • Colombo, J. C., Barreda, A., Bilos, C., Cappelletti, N., Migoya, M. C., & Skorupka, C. (2005b). Oil spill in the Rio de La Plata estuary, Argentina: 2-hydrocarbon disappearance rates in sediments and soils. Environmental Pollution, 134, 267–276.

    Article  CAS  Google Scholar 

  • Cui, Y. C., & Fu, T. (1998). Harm of water pollution and organic pollutants in drinking water resources in China. Urban Environment &Urban Ecology (in Chinese), 11(3), 23–25.

    Google Scholar 

  • Daniel, R.A., & Borden, R.C. (1997). Spatial variability in intrinsic bioremediation rates: effects on contaminant transport. In: B.C. Alleman, & A. Leeson (Eds.), In situ and on-site bioremediation, (Vol. 1, pp. 29–34). Columbus: Battelle.

  • Davis, G. B., Barber, C., Power, T. R., Thierrin, J., Patterson, B. M., Rayner, J. L., et al. (1999). The variability and intrinsic remediation of a BTEX plume in anaerobic sulphate-rich groundwater. Journal of Contaminant Hydrology, 36, 265–290.

    Article  CAS  Google Scholar 

  • De La Torre-Roche, R. J., Lee, W. Y., & Campos-Díaz, S. I. (2009). Soil-borne polycyclic aromatic hydrocarbons in El Paso, Texas: analysis of a potential problem in the United States/Mexico border region. Journal of Hazardous Materials, 163, 946–958.

    Article  Google Scholar 

  • De Luca, G., Furesi, A., Leardi, R., Giovanni, M. G., Panzanelli, A., Costantina, P. P., et al. (2004). Polycyclic aromatic hydrocarbons assessment in the sediments of the Porto Torres Harbor (Northern Sardinia, Italy). Marine Chemistry, 86, 15–32.

    Article  Google Scholar 

  • Doong, R. A., & Lin, Y. T. (2004). Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan. Water Research, 38, 1733–1744.

    Article  CAS  Google Scholar 

  • Dyreborg, S., & Arvin, E. (1995). Inhibition of nitrification by creosote contaminated water. Water Research, 29, 1603–1606.

    Article  CAS  Google Scholar 

  • Eggen, T., Moeder, M., & Arukwe, A. (2010). Municipal landfill leachates: a significant source for new and emerging pollutants. Science of the Total Environment, 408, 5147–5157.

    Article  CAS  Google Scholar 

  • Eichelberg, J.W., & Bundle, W.L. (1989). US measurement of purgeable organic compounds in water by capillary column gas chromatography/mass spectrometry. EPA method 524.2 revision 3.0. Columbus: EPA.

  • Essaid, H. I., Bekins, B. A., Godsy, E. M., Waren, E., Baedecker, M. J., & Cozzarelli, I. M. (1995). Simulation of aerobic and anaerobic biodegradation processes at a crude oil spill site. Water Resources Research, 31(12), 3309–3327.

    Article  CAS  Google Scholar 

  • Fernandes, M. B., Sicre, M. A., Boireau, A., & Tronczynski, J. (1997). Polyaromatic hydrocarbon (PAH) distributions in the Seine River and its Estuary. Marine Pollution Bulletin, 34, 857–867.

    Article  CAS  Google Scholar 

  • Geik, K.H., Zakaria, M.P., Lee, W.Y., & Haye, R., (2009). Landfill leachate as a source of polycyclic aromatic hydrocarbons PAHs to Malaysian waters. PPT-presentation online. http://landbase.hq.unu.edu

  • Gogou, A., Apostolaki, M., & Stephanou, E. G. (1998). Determination of organic molecular markers in marine aerosols and sediments: one-step flash chromatography compound class fractionation and capillary gas chromatographic analysis. Journal of Chromatography A, 799, 215–231.

    Article  CAS  Google Scholar 

  • Golfinopoulos, S. K., Lekkas, T. D., & Nikolau, A. D. (2001). Comparison of methods for determination of volatile organic compounds in drinking water. Chemosphere, 45, 275–284.

    Article  CAS  Google Scholar 

  • Götz, R., Bauer, O. H., Friesel, P., & Roch, K. (1998). Organic trace compounds in the water of the River Elbe near Hamburg. Chemosphere, 36, 2103–2118.

    Article  Google Scholar 

  • Grbic-Galic, D., & Vogel, T. M. (1987). Transformation of toluene and benzene by mixed methanogenic cultures. Applied and Environmental Microbiology, 53, 254–260.

    CAS  Google Scholar 

  • Gschwend, P. M., & Hites, R. A. (1981). Fluxes of polycyclic aromatic hydrocarbons to marine and lacustrine sediments in the Northeastern US. Geochimica et Cosmochimica Acta, 45, 2359–2367.

    Article  CAS  Google Scholar 

  • Haritash, A. K., & Kaushik, C. P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials, 169, 1–15.

    Article  CAS  Google Scholar 

  • Hinga, K. R. (2003). Degradation rates of low molecular weight PAH correlate with sediment TOC in marine subtidal sediments. Marine Pollution Bulletin, 46, 466–474.

    Article  CAS  Google Scholar 

  • Iturbe, R., Flores, C., Flores, R. M., & Torres, L. G. (2005). Subsoil TPH and other petroleum fractions-contamination levels in an oil storage and distribution station in north-central Mexico. Chemosphere, 61, 1618–1631.

    Article  CAS  Google Scholar 

  • Keener, W. K., & Arp, D. J. (1994). Transformation of aromatic compounds by Nitrosomonas europaea. Applied and Environmental Microbiology, 4, 1914–1920.

    Google Scholar 

  • Lee, B. K., & Lee, C. B. (2004). Development of an improved dry and wet deposition collector and the atmospheric deposition of PAHs onto Ulsan Bay Korea. Atmospheric Environment, 38, 863–871.

    Article  CAS  Google Scholar 

  • Lee, J. Y., Cheon, J. Y., Lee, K. K., Lee, S. Y., & Lee, M. H. (2001). Statistical evaluation of geochemical parameter distribution in a ground water system contaminated with petroleum hydrocarbons. Journal of Environmental Quality, 35, 1548–1563.

    Article  Google Scholar 

  • Li, G. C., Xia, X. H., Yang, Z. F., Wang, R., & Voulvoulis, N. (2006). Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China. Environmental Pollution, 144, 985–993.

    Article  CAS  Google Scholar 

  • Lu, G. P., Clement, T. P., Zheng, C. M., & Wiedemeier, T. H. (1999). Natural attenuation of BTEX compounds: model development and field-scale application. Ground Water, 37(5), 707–717.

    Article  CAS  Google Scholar 

  • Lyngkilde, J., & Christensen, T. H. (1992). Redox zones of a landfill leachate pollution plume (Vejen, Denmark). Journal of Contaminant Hydrology, 10, 273–289.

    Article  CAS  Google Scholar 

  • Magi, E., Bianco, R., Ianni, C., & Di Carro, M. (2002). Distribution of polycyclic aromatic hydrocarbons in the sediments of the Adriatic Sea. Environmental Pollution, 119, 91–98.

    Article  CAS  Google Scholar 

  • Maliszewska-Kordybach, B. (1996). Polycyclic aromatic hydrocarbons in agricultural soils in Poland: preliminary proposals for criteria to evaluate the level of soil contamination. Applied Geochemistry, 11, 121–127.

    Article  Google Scholar 

  • McNally, D. L., Mihelcic, J. R., & Lueking, D. R. (1999). Biodegradation of mixtures of polycyclic aromatic hydrocarbons under aerobic and nitrate-reducing conditions. Chemosphere, 38(6), 1313–1321.

    Article  CAS  Google Scholar 

  • Meuller, J. G., Chapman, P. J., & Pritchard, P. H. (1989). Action of fluoranthene-utilizing community on polycyclic aromatic hydrocarbon components of creosote. Applied and Environmental Microbiology, 55, 3085–3090.

    Google Scholar 

  • Mitra, S., & Bianchi, T. S. (2003). A preliminary assessment of polycyclic aromatic hydrocarbon distributions in the lower Mississippi River and Gulf of Mexico. Marine Chemistry, 82, 273–288.

    Article  CAS  Google Scholar 

  • Neilson, A. H., & Allard, A. S. (1998). Microbial metabolism of PAHs and heteroarenes. In A. H. Neilson (Ed.), The handbook of environmental chemistry (pp. 2–80). Berlin: Springer. vol. 3, part I.

    Google Scholar 

  • Nielsen, Per H., Bjarnadóttir, H., Winter, Pia L., & Christensen, T.H. (1995). In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume. 2. Fate of aromatic and chlorinated aliphatic compounds. Journal of Contaminant Hydrology, 20, 51–66.

  • Nikolaou, A. D., Golfinopoulos, S. K., Kostopoulou, M. N., Kolokytas, G. A., & Lekkas, T. D. (2002). Determination of volatile organic compounds in surface waters and treated wastewater in Greece. Water Research, 36, 2883–2890.

    Article  CAS  Google Scholar 

  • Persson, L., Alsberg, T., Ledin, A., & Odham, G. (2006). Transformations of dissolved organic matter in a landfill leachate—a size exclusion chromatography/mass spectrometric approach. Chemosphere, 64, 1093–1099.

    Article  CAS  Google Scholar 

  • Pies, C., Hoffmann, B., Petrowsky, J., Yang, Y., Ternes, T. A., & Hofmann, T. (2008). Characterization and source identification of polycyclic aromatic hydrocarbons (PAHs) in river bank soils. Chemosphere, 72, 1594–1601.

    Article  CAS  Google Scholar 

  • Postma, D., Boesen, C., Kristiansen, H., & Larsen, F. (1991). Nitrate reduction in an unconfined sandy aquifer—water chemistry, reduction processes, and geochemical modeling. Water Resources Research, 27(8), 2027–2045.

    Article  CAS  Google Scholar 

  • Qu, Z.W. (2010). Hydrogeological conditions and evaluation of groundwater resources in Yingbei region of Zhoukou city (pp. 12–13). Master degree thesis in China University of Geosciences (Wuhan), (in Chinese with English abstract).

  • Rainwater, K., Mayfield, M. P., Heintz, C., & Claborn, B. J. (1993). Enhanced in situ biodegradation of diesel fuel by cyclic vertical water table movement: preliminary studies. Water Environment Research, 65, 717–725.

    Article  CAS  Google Scholar 

  • Ravindra, K., Sokhi, R., & van Grieken, R. (2008a). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42, 2895–2921.

    Article  CAS  Google Scholar 

  • Ravindra, K., Wauters, E., & van Grieken, R. (2008b). Variation in particulate PAHs levels and their relation with the transboundary movement of the air masses. Science of the Total Environment, 396, 100–110.

    Article  CAS  Google Scholar 

  • Rothermich, M. M., Hayes, L. A., & Lovley, D. R. (2002). Anaerobic, sulfate-dependent degradation of polycyclic aromatic hydrocarbons in petroleum-contaminated harbor sediment. Environmental Science & Technology, 36, 4811–4817.

    Article  CAS  Google Scholar 

  • Rügge, K., Bjerg, P. L., & Christensen, T. H. (1995). Distribution of organic compounds from municipal solid waste in the groundwater downgradient of a landfill (Grindsted, Denmark). Environmental Science & Technology, 29, 1395–1400.

    Article  Google Scholar 

  • Sahu, S. K., Pandit, G. G., & Sadasivan, S. (2004). Precipitation scavenging of polycyclic aromatic hydrocarbons in Mumbai, India. Science of the Total Environment, 318, 245–249.

    Article  CAS  Google Scholar 

  • Shaw, M., Tibbetts, I. R., & Jochen, M. F. (2004). Monitoring PAHs in the Brisbane River and Moreton Bay, Australia, using semipermeable membrane devices and EROD activity in yellowfin bream, Acanthopagrus australis. Chemosphere, 56, 237–246.

    Article  CAS  Google Scholar 

  • Shi, Z., Tao, S., Pan, B., Fan, W., He, X. C., Zuo, Q., et al. (2005). Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons. Environmental Pollution, 134, 97–111.

    Article  CAS  Google Scholar 

  • Sicre, M. A., Marty, J. C., Saliot, A., Aparicio, X., Grimalt, J., & Albaiges, J. (1987). Aliphatic and aromatic hydrocarbons in different sized aerosols over the Mediterranean Sea: occurrence and origin. Atmospheric Environment, 21, 2247–2259.

    Article  CAS  Google Scholar 

  • Sinke, A. J. C., Dury, O., & Zobrist, J. (1998). Effects of a fluctuating water table: column study on redox dynamics and fate of some organic pollutants. Journal of Contaminant Hydrology, 33, 231–246.

    Article  CAS  Google Scholar 

  • Soclo, H. H., Garrigues, P., & Ewald, M. (2000). Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: case studies in Cotonou (Benin) and Aquitaine (France) areas. Marine Pollution Bulletin, 40, 387–396.

    Article  CAS  Google Scholar 

  • Song, X. Y., Sun, L. N., Wang, X., Li, X. X., & Sun, T. Y. (2007). Organic contamination status of Xihe River surface water and its riverbank underground water. Chinese Journal of Ecology (in Chinese with English abstract), 26(12), 2057–2061.

    CAS  Google Scholar 

  • Stafford, D. A. (1974). The effect of phenols and heterocyclic bases on nitrification in activated sludges. Journal of Applied Bacteriology, 37, 75–82.

    Article  CAS  Google Scholar 

  • Taylor, R., & Allen, A. (2006). Waste disposal and landfill:Information needs. In: O. Schmoll, G. Howard, J. Chilton, & I. Chorus (Eds.). Protecting groundwater for health: managing the quality of drinking-water sources (Chapter 12, pp. 1–12). London: IWA.

  • Tobiszewski, M., & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources. Environmental Pollution, 162, 110–119.

    Article  CAS  Google Scholar 

  • Tong C.S. (2012). The characterization of groundwater pollution and prevention measures around an old landfill: heavy metals and polycyclic aromatic hydrocarbons (pp. 22–31). Ph.D. degree thesis in China University of Geosciences (Wuhan) (in Chinese with English abstract).

  • van Breukelen, B.M. (2003). Natural attenuation of landfill leachate: a combined biogeochemical process analysis and microbial ecology approach (pp. 105–112). Doctoral thesis Vrije Universiteit Amsterdam.

  • van Brummelen, T. C., van Hattum, B., Crommentuijn, T. & Kalf, D. E. (1998). Bioavailability and ecotoxicology of PAHs. In A. H. Neilson (Ed.), PAHs and related compounds chemistry (pp. 175–215). New York: Springer.

  • Wan, X. L., Chen, J. W., Tian, F. L., Sun, W. J., Yang, F. L., & Saiki, K. (2006). Source apportionment of PAHs in atmospheric particulates of Dalian: factor analysis with nonnegative constraints and emission inventory analysis. Atmospheric Environment, 40, 6666–6675.

    Article  CAS  Google Scholar 

  • Wang, Y., Li, P. H., Li, H. L., Liu, X. H., & Wang, W. X. (2010). PAHs distribution in precipitation at Mount Taishan, China: identification of sources and meteorological influences. Atmospheric Research, 95, 1–7.

    Article  CAS  Google Scholar 

  • WHO (2006). Guidelines for drinking-water quality, 3rd edn, vol. 1. Recommendations. Geneva: World Health Organization.

  • Wiedemeier, T., Wilson, J.T., Kampbell, D.H., Miller, R.N., & Hansen, J.E. (1995). Technical protocol for implementing intrinsic remediation with long-term monitoring for natural attenuation of fuel contamination dissolved in groundwater, Vols. I and II. Air Force Centre for Environmental Excellence AFCEE, Technology Transfer Division, Brooks AFB, San Antonio, TX.

  • Wilson, R. D., Thornton, S. F., & Mackay, D. M. (2004). Challenges in monitoring the natural attenuation of spatially variable plumes. Biodegradation, 15, 359–369.

    Article  Google Scholar 

  • Yunker, M. B., Macdonald, R. W., Vingarzan, R., Mitchell, R. H., Goyette, D., & Sylvestre, S. (2002). PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Organic Geochemistry, 33, 489–515.

    Article  CAS  Google Scholar 

  • Zaidi, B. R., & Imam, S. H. (1999). Factors affecting microbial degradation of polycyclic aromatic hydrocarbon phenanthrene in the Caribbean coastal water. Marine Pollution Bulletin, 38(8), 737–742.

    Article  CAS  Google Scholar 

  • Zakaria, M. P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., et al. (2002). Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuargenic PAHs. Environmental Science & Technology, 36, 1907–1918.

    Article  CAS  Google Scholar 

  • Zhang, Z. L., Huang, J., Yu, G., & Hong, H. S. (2004). Occurrence of PAHs, PCBs and organochlorine pesticides in the Tonghui River of Beijing, China. Environmental Pollution, 130, 249–261.

    Article  CAS  Google Scholar 

  • Zhang, W., Zhang, S., Wan, C., Yue, D., Ye, Y., & Wang, X. (2008). Source diagnostics of polycyclic aromatic hydrocarbons in urban road runoff, dust, rain and canopy throughfall. Environmental Pollution, 153, 594–601.

    Article  CAS  Google Scholar 

  • Zhou, J. L., & Maskaoui, K. (2003). Distribution of polycyclic aromatic hydrocarbons in water and surface sediments from Daya Bay, China. Environmental Pollution, 121, 269–281.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Exploratory Forefront Project (no. 2012QY007) for the Strategic Science Plan in the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, and was undertaken as part of a groundwater survey project titled “Investigation and evaluation of typical contaminated sites in Zhoukou region of Huaihe River Plain” (no. 1212010634505). The authors are grateful to Mr. Xie Shiyong and Qu Zewei from School of Environmental Studies, China University of Geosciences, for their help and support during water sampling in the field and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. X. Tong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, D.M., Tong, X.X., Jin, M.G. et al. Evaluation of organic contamination in urban groundwater surrounding a municipal landfill, Zhoukou, China. Environ Monit Assess 185, 3413–3444 (2013). https://doi.org/10.1007/s10661-012-2801-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10661-012-2801-z

Keywords

Navigation