Skip to main content
Log in

A Comparison of Phenomenologic Growth Laws for Myocardial Hypertrophy

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

The heart grows in response to changes in hemodynamic loading during normal development and in response to valve disease, hypertension, and other pathologies. In general, a left ventricle subjected to increased afterload (pressure overloading) exhibits concentric growth characterized by thickening of individual myocytes and the heart wall, while one experiencing increased preload (volume overloading) exhibits eccentric growth characterized by lengthening of myocytes and dilation of the cavity. Predictive models of cardiac growth could be important tools in evaluating treatments, guiding clinical decision making, and designing novel therapies for a range of diseases. Thus, in the past 20 years there has been considerable effort to simulate growth within the left ventricle. While a number of published equations or systems of equations (often termed “growth laws”) can capture some aspects of experimentally observed growth patterns, no direct comparisons of the various published models have been performed. Here we examine eight of these laws and compare them in a simple test-bed in which we imposed stretches measured during in vivo pressure and volume overload. Laws were compared based on their ability to predict experimentally measured patterns of growth in the myocardial fiber and radial directions as well as the ratio of fiber-to-radial growth. Three of the eight laws were able to reproduce most key aspects of growth following both pressure and volume overload. Although these three growth laws utilized different approaches to predict hypertrophy, they all employed multiple inputs that were weakly correlated during in vivo overload and therefore provided independent information about mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anversa, P., Ricci, R., Olivetti, G.: Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J. Am. Coll. Cardiol. 7, 1140–1149 (1986)

    Article  Google Scholar 

  2. Cantor, E.J.F., Babick, A.P., Vasanji, Z., Dhalla, N.S., Netticadan, T.: A comparative serial echocardiographic analysis of cardiac structure and function in rats subjected to pressure or volume overload. J. Mol. Cell. Cardiol. 38, 777–786 (2005)

    Article  Google Scholar 

  3. Frey, N., Olson, E.N.: Cardiac hypertrophy: the good, the bad, and the ugly. Annu. Rev. Physiol. 65, 45–79 (2003)

    Article  Google Scholar 

  4. Heineke, J., Molkentin, J.D.: Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589–600 (2006)

    Article  Google Scholar 

  5. Rodriguez, E.K., Hoger, A., McCulloch, A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  6. Grossman, W., Jones, D., McLaurin, L.P.: Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56, 56–64 (1975)

    Article  Google Scholar 

  7. Emery, J.L., Omens, J.H.: Mechanical regulation of myocardial growth during volume-overload hypertrophy in the rat. Am. J. Physiol. 273, 1198–1204 (1997)

    Google Scholar 

  8. Holmes, J.W.: Candidate mechanical stimuli for hypertrophy during volume overload. J. Appl. Physiol. 97, 1453 (2004)

    Article  ADS  Google Scholar 

  9. Lin, I.E., Taber, L.A.: A model for stress-induced growth in the developing heart. J. Biomech. Eng. 117, 343–349 (1995)

    Article  Google Scholar 

  10. Taber, L.A.: Biomechanical growth laws for muscle tissue. J. Theor. Biol. 193, 201–213 (1998)

    Article  Google Scholar 

  11. Kroon, W., Delhaas, T., Arts, T., Bovendeerd, P.: Computational modeling of volumetric soft tissue growth: application to the cardiac left ventricle. Biomech. Model. Mechanobiol. 8, 301–309 (2009)

    Article  Google Scholar 

  12. Göktepe, S., Abilez, O.J., Parker, K.K., Kuhl, E.: A multiscale model for eccentric and concentric cardiac growth through sarcomerogenesis. J. Theor. Biol. 265, 433–442 (2010)

    Article  Google Scholar 

  13. Arts, T., Delhaas, T., Bovendeerd, P., Verbeek, X., Prinzen, F.W.: Adaptation to mechanical load determines shape and properties of heart and circulation: the CircAdapt model. Am. J. Physiol., Heart Circ. Physiol. 288, 1943–1954 (2005)

    Article  Google Scholar 

  14. Kerckhoffs, R.C.P., Omens, J.H., McCulloch, A.D.: A single strain-based growth law predicts concentric and eccentric cardiac growth during pressure and volume overload. Mech. Res. Commun. 42, 40–50 (2012)

    Article  Google Scholar 

  15. Streeter, D.D., Spotnitz, H.M., Patel, D.P., Ross, J., Sonnenblick, E.H.: Fiber orientation in the canine left ventricle during diastole and systole. Circ. Res. 24, 339–347 (1969)

    Article  Google Scholar 

  16. Fomovsky, G.M., Holmes, J.W.: Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat. Am. J. Physiol., Heart Circ. Physiol. 298, 221–228 (2010)

    Article  Google Scholar 

  17. Villarreal, F.J., Waldman, L.K., Lew, W.Y.: Technique for measuring regional two-dimensional finite strains in canine left ventricle. Circ. Res. 62, 711–721 (1988)

    Article  Google Scholar 

  18. Lew, W.Y., LeWinter, M.M.: Regional comparison of midwall segment and area shortening in the canine left ventricle. Circ. Res. 58, 678–691 (1986)

    Article  Google Scholar 

  19. Omens, J.H., Farr, D.D., McCulloch, A.D., Waldman, L.K.: Comparison of two techniques for measuring two-dimensional strain in rat left ventricles. Am. J. Physiol. 271, 1256–1261 (1996)

    Google Scholar 

  20. Omens, J.H., MacKenna, D.A., McCulloch, A.D.: Measurement of strain and analysis of stress in resting rat left ventricular myocardium. J. Biomech. 26, 665–676 (1993)

    Article  Google Scholar 

  21. Tobita, K., Schroder, E.A., Tinney, J.P., Garrison, J.B., Keller, B.B.: Regional passive ventricular stress-strain relations during development of altered loads in chick embryo. Am. J. Physiol., Heart Circ. Physiol. 282, 2386–2396 (2002)

    Article  Google Scholar 

  22. Glower, D.D., Spratt, J.A., Snow, N.D., Kabas, J.S., Davis, J.W., Olsen, C.O., Tyson, G.S., Sabiston, D.C., Rankin, J.S.: Linearity of the Frank-Starling relationship in the intact heart: the concept of preload recruitable stroke work. Circulation 71, 994–1009 (1985)

    Article  Google Scholar 

  23. Sodums, M.T., Badke, F.R., Starling, M.R., Little, W.C., O’Rourke, R.A.: Evaluation of left ventricular contractile performance utilizing end-systolic pressure-volume relationships in conscious dogs. Circ. Res. 54, 731–739 (1984)

    Article  Google Scholar 

  24. Rankin, J.S., McHale, P.A., Arentzen, C.E., Ling, D., Greenfield, J.C., Anderson, R.W.: The three-dimensional dynamic geometry of the left ventricle in the conscious dog. Circ. Res. 39, 304–313 (1976)

    Article  Google Scholar 

  25. Fomovsky, G.M., Clark, S.A., Parker, K.M., Ailawadi, G., Holmes, J.W.: Anisotropic reinforcement of acute anteroapical infarcts improves pump function. Circ. Heart Fail. 5, 515–522 (2012)

    Article  Google Scholar 

  26. Omens, J.H., Fung, Y.C.: Residual strain in rat left ventricle. Circ. Res. 66, 37–45 (1990)

    Article  Google Scholar 

  27. Rodriguez, E.K., Omens, J.H., Waldman, L.K., McCulloch, A.D.: Effect of residual stress on transmural sarcomere length distributions in rat left ventricle. Am. J. Physiol. 264, 1048–1056 (1993)

    Google Scholar 

  28. Alyono, D., Ring, W.S., Anderson, M.R., Anderson, R.W.: Left ventricular adaptation to volume overload from large aortocaval fistula. Surgery 96, 360–367 (1984)

    Google Scholar 

  29. Fujisawa, A., Sasayama, S., Takahashi, M., Nakamura, M., Ohyagi, A., Lee, J.D., Yui, Y., Kawai, C.: Enhancement of left ventricular contractility after opening of an arteriovenous fistula in dogs. Cardiovasc. Res. 18, 51–59 (1984)

    Article  Google Scholar 

  30. Nakano, K., Swindle, M.M., Spinale, F., Ishihara, K., Kanazawa, S., Smith, A., Biederman, R.W., Clamp, L., Hamada, Y., Zile, M.R.: Depressed contractile function due to canine mitral regurgitation improves after correction of the volume overload. J. Clin. Invest. 87, 2077–2086 (1991)

    Article  Google Scholar 

  31. Katayama, K., Tajimi, T., Guth, B.D., Matsuzaki, M., Lee, J.-D., Seitelberger, R., Peterson, K.L.: Early diastolic filling dynamics during experimental mitral regurgitation in the conscious dog. Circulation 78, 390–400 (1988)

    Article  Google Scholar 

  32. Kleaveland, J.P., Kussmaul, W.G., Vinciguerra, T., Diters, R., Carabello, B.A.: Volume overload hypertrophy in a closed-chest model of mitral regurgitation. Am. J. Physiol. 254, 1034–1041 (1988)

    Google Scholar 

  33. Carabello, B.A., Nakano, K., Corin, W., Biederman, R., Spann, J.F. Jr.: Left ventricular function in experimental volume overload hypertrophy. Am. J. Physiol. 256, 974–981 (1989)

    Google Scholar 

  34. Sasayama, S., Ross, J., Franklin, D., Bloor, C.M., Bishop, S., Dilley, R.B.: Adaptations of the left ventricle to chronic pressure overload. Circ. Res. 38, 172–178 (1976)

    Article  Google Scholar 

  35. Crozatier, B., Caillet, D., Bical, O.: Left ventricular adaptation to sustained pressure overload in the conscious dog. Circ. Res. 54, 21–29 (1984)

    Article  Google Scholar 

  36. Su, J.B., Crozatier, B.: Preload-induced curvilinearity of left ventricular end-systolic pressure-volume relations. Effects on derived indexes in closed-chest dogs. Circulation 79, 431–440 (1989)

    Article  Google Scholar 

  37. Karunanithi, M.K., Feneley, M.P.: Single-beat determination of preload recruitable stroke work relationship: derivation and evaluation in conscious dogs. J. Am. Coll. Cardiol. 35, 502–513 (2000)

    Article  Google Scholar 

  38. Zile, M.R., Tomita, M., Ishihara, K., Nakano, K., Lindroth, J., Spinale, F., Swindle, M., Carabello, B.A.: Changes in diastolic function during development and correction of chronic LV volume overload produced by mitral regurgitation. Circulation 87, 1378–1388 (1993)

    Article  Google Scholar 

  39. Sabri, A., Rafiq, K., Seqqat, R., Kolpakov, M.A., Dillon, R., Dell’italia, L.J.: Sympathetic activation causes focal adhesion signaling alteration in early compensated volume overload attributable to isolated mitral regurgitation in the dog. Circ. Res. 102, 1127–1136 (2008)

    Article  Google Scholar 

  40. Lee, J.D., Sasayama, S., Kihara, Y., Ohyagi, A., Fujisawa, A., Yui, Y., Kawai, C.: Adaptations of the left ventricle to chronic volume overload induced by mitral regurgitation in conscious dogs. Heart Vessels 1, 9–15 (1985)

    Article  Google Scholar 

  41. Newman, W.H., Webb, J.G.: Adaptation of left ventricle to chronic pressure overload: response to inotropic drugs. Am. J. Physiol. 238, 134–143 (1980)

    Google Scholar 

  42. Wojciechowski, P., Juric, D., Louis, X.L., Thandapilly, S.J., Yu, L., Taylor, C., Netticadan, T.: Resveratrol arrests and regresses the development of pressure overload- but not volume overload-induced cardiac hypertrophy in rats. J. Nutr. 140, 962–968 (2010)

    Article  Google Scholar 

  43. Pawlush, D.G., Moore, R.L., Musch, T.I., Davidson, W.R.: Echocardiographic evaluation of size, function, and mass of normal and hypertrophied rat ventricles. J. Appl. Physiol. 74, 2598–2605 (1993)

    Article  Google Scholar 

  44. Guido, M.C., De Carvalho Frimm, C., Koike, M.K., Cordeiro, F.F., Moretti, A.I.S., Godoy, L.C.: Low coronary driving pressure is associated with subendocardial remodelling and left ventricular dysfunction in aortocaval fistula. Clin. Exp. Pharmacol. Physiol. 34, 1165–1172 (2007)

    Google Scholar 

  45. Melenovsky, V., Benes, J., Skaroupkova, P., Sedmera, D., Strnad, H., Kolar, M., Vlcek, C., Petrak, J., Benes, J., Papousek, F., Oliyarnyk, O., Kazdova, L., Cervenka, L.: Metabolic characterization of volume overload heart failure due to aorto-caval fistula in rats. Mol. Cell. Biochem. 354, 83–96 (2011)

    Article  Google Scholar 

  46. Ryan, T.D., Rothstein, E.C., Aban, I., Tallaj, J.A., Husain, A., Lucchesi, P.A., Dell’Italia, L.J.: Left ventricular eccentric remodeling and matrix loss are mediated by bradykinin and precede cardiomyocyte elongation in rats with volume overload. J. Am. Coll. Cardiol. 49, 811–821 (2007)

    Article  Google Scholar 

  47. Chen, Y.W., Pat, B., Gladden, J.D., Zheng, J., Powell, P., Wei, C.C., Cui, X., Husain, A., Dell’Italia, L.J.: Dynamic molecular and histopathological changes in the extracellular matrix and inflammation in the transition to heart failure in isolated volume overload. Am. J. Physiol., Heart Circ. Physiol. 300, 2251–2260 (2011)

    Article  Google Scholar 

  48. Wilson, K., Guggilam, A., West, T.A., Zhang, X., Trask, A.J., Cismowski, M.J., de Tombe, P., Sadayappan, S., Lucchesi, P.A.: Effects of a myofilament calcium sensitizer on left ventricular systolic and diastolic function in rats with volume overload heart failure. Am. J. Physiol., Heart Circ. Physiol. 307, 1605–1617 (2014)

    Article  Google Scholar 

  49. Gladden, J.D., Zelickson, B.R., Guichard, J.L., Ahmed, M.I., Yancey, D.M., Ballinger, S., Shanmugam, M., Babu, G.J., Johnson, M.S., Darley-Usmar, V., Dell’Italia, L.J.: Xanthine oxidase inhibition preserves left ventricular systolic but not diastolic function in cardiac volume overload. Am. J. Physiol., Heart Circ. Physiol. 305, 1440–1450 (2013)

    Article  Google Scholar 

  50. Wei, C.C., Chen, Y., Powell, L.C., Zheng, J., Shi, K., Bradley, W.E., Powell, P.C., Ahmad, S., Ferrario, C.M., Dell’Italia, L.J.: Cardiac kallikrein-kinin system is upregulated in chronic volume overload and mediates an inflammatory induced collagen loss. PLoS ONE 7, 1–14 (2012)

    Google Scholar 

  51. Miyamoto, M.I., del Monte, F., Schmidt, U., DiSalvo, T.S., Kang, Z.B., Matsui, T., Guerrero, J.L., Gwathmey, J.K., Rosenzweig, A., Hajjar, R.J.: Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc. Natl. Acad. Sci. USA 97, 793–798 (2000)

    Article  ADS  Google Scholar 

  52. Litwin, S.E., Katz, S.E., Weinberg, E.O., Lorell, B.H., Aurigemma, G.P., Douglas, P.S.: Serial echocardiographic-Doppler assessment of left ventricular geometry and function in rats with pressure-overload hypertrophy: chronic angiotensin-converting enzyme inhibition attenuates the transition to heart failure. Circulation 91, 2642–2654 (1995)

    Article  Google Scholar 

  53. Kobayashi, S., Yano, M., Kohno, M., Obayashi, M., Hisamatsu, Y., Ryoke, T., Ohkusa, T., Yamakawa, K., Matsuzaki, M.: Influence of aortic impedance on the development of pressure-overload left ventricular hypertrophy in rats. Circulation 94, 3362–3368 (1996)

    Article  Google Scholar 

  54. Hao, J., Kim, C.H., Ha, T.S., Ahn, H.Y.: Epigallocatechin-3 gallate prevents cardiac hypertrophy induced by pressure overload in rats. J. Vet. Sci. 8, 121 (2007)

    Article  Google Scholar 

  55. Doenst, T., Pytel, G., Schrepper, A., Amorim, P., Färber, G., Shingu, Y., Mohr, F.W., Schwarzer, M.: Decreased rates of substrate oxidation ex vivo predict the onset of heart failure and contractile dysfunction in rats with pressure overload. Cardiovasc. Res. 86, 461–470 (2010)

    Article  Google Scholar 

  56. Shyu, K.G., Liou, J.Y., Wang, B.W., Fang, W.J., Chang, H.: Carvedilol prevents cardiac hypertrophy and overexpression of hypoxia-inducible factor-1alpha and vascular endothelial growth factor in pressure-overloaded rat heart. J. Biomed. Sci. 12, 409–420 (2005)

    Article  Google Scholar 

  57. Derumeaux, G., Mulder, P., Richard, V., Chagraoui, A., Nafeh, C., Bauer, F., Henry, J.P., Thuillez, C.: Tissue Doppler imaging differentiates physiological from pathological pressure-overload left ventricular hypertrophy in rats. Circulation 105, 1602–1608 (2002)

    Article  Google Scholar 

  58. Hwang, H.S., Bleske, B.E., Ghannam, M.M.J., Converso, K., Russell, M.W., Hunter, J.C., Boluyt, M.O.: Effects of hawthorn on cardiac remodeling and left ventricular dysfunction after 1 month of pressure overload-induced cardiac hypertrophy in rats. Cardiovasc. Drugs Ther. 22, 19–28 (2008)

    Article  Google Scholar 

  59. Ma, Y., Chen, B., Liu, D., Yang, Y., Xiong, Z., Zeng, J., Dong, Y.: MG132 treatment attenuates cardiac remodeling and dysfunction following aortic banding in rats via the NF-\(\kappa\mbox{B/TGF}\beta 1\) pathway. Biochem. Pharmacol. 81, 1228–1236 (2011)

    Article  Google Scholar 

  60. Xu, R., Lin, F., Zhang, S., Chen, X., Hu, S., Zheng, Z.: Signal pathways involved in reverse remodeling of the hypertrophic rat heart after pressure unloading. Int. J. Cardiol. 143, 414–423 (2010)

    Article  Google Scholar 

  61. Li, J., Li, P., Feng, X., Li, Z., Hou, R., Han, C., Zhang, Y.: Effects of Losartan on pressure overload-induced cardiac gene expression profiling in rats. Clin. Exp. Pharmacol. Physiol. 30(11), 827–832 (2003)

    Article  ADS  Google Scholar 

  62. Kume, O., Takahashi, N., Wakisaka, O., Nagano-Torigoe, Y., Teshima, Y., Nakagawa, M., Yufu, K., Hara, M., Saikawa, T., Yoshimatsu, H.: Pioglitazone attenuates inflammatory atrial fibrosis and vulnerability to atrial fibrillation induced by pressure overload in rats. Heart Rhythm 8, 278–285 (2011)

    Article  Google Scholar 

  63. Phrommintikul, A., Tran, L., Kompa, A., Wang, B., Adrahtas, A., Cantwell, D., Kelly, D.J., Krum, H.: Effects of a Rho kinase inhibitor on pressure overload induced cardiac hypertrophy and associated diastolic dysfunction. Am. J. Physiol., Heart Circ. Physiol. 294, 1804–1814 (2008)

    Article  Google Scholar 

  64. Spinale, F.G., Ishihra, K., Zile, M., DeFryte, G., Crawford, F.A., Carabello, B.A.: Structural basis for changes in left ventricular function and geometry because of chronic mitral regurgitation and after correction of volume overload. J. Thorac. Cardiovasc. Surg. 106, 1147–1157 (1993)

    Google Scholar 

  65. Tsutsui, H., Urabe, Y., Mann, D.L., Tagawa, H., Carabello, B.A., Cooper, G., Zile, M.R.: Effects of chronic mitral regurgitation on diastolic function in isolated cardiocytes. Circ. Res. 72, 1110–1123 (1993)

    Article  Google Scholar 

  66. Gerdes, A.M., Campbell, S.E., Hilbelink, D.R.: Structural remodeling of cardiac myocytes in rats with arteriovenous fistulas. Lab. Invest. 59, 857–861 (1988)

    Google Scholar 

  67. Liu, Z., Hilbelink, D.R., Crockett, W.B., Gerdes, A.M.: Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 1. Developing and established hypertrophy. Circ. Res. 69, 52–58 (1991)

    Article  Google Scholar 

  68. Gerdes, A.M., Clark, L.C., Capasso, J.M.: Regression of cardiac hypertrophy after closing an aortocaval fistula in rats. Am. J. Physiol. 268, 2345–2351 (1995)

    Google Scholar 

  69. Zierhut, W., Zimmer, H.G., Gerdes, A.M.: Effect of angiotensin converting enzyme inhibition on pressure-induced left ventricular hypertrophy in rats. Circ. Res. 69, 609–617 (1991)

    Article  Google Scholar 

  70. Wang, X., Li, F., Gerdes, A.M.: Chronic pressure overload cardiac hypertrophy and failure in guinea pigs: I. Regional hemodynamics and myocyte remodeling. J. Mol. Cell. Cardiol. 31, 307–317 (1999)

    Article  Google Scholar 

  71. Campbell, S.E., Rakusan, K., Gerdes, A.M.: Change in cardiac myocyte size distribution in aortic-constricted neonatal rats. Basic Res. Cardiol. 84, 247–258 (1989)

    Article  Google Scholar 

  72. Korecky, B., Rakusan, K.: Normal and hypertrophic growth of the rat heart: changes in cell dimensions and number. Am. J. Physiol. 234, 123–128 (1978)

    Google Scholar 

  73. Campbell, S.E., Korecky, B., Rakusan, K.: Remodeling of myocyte dimensions in hypertrophic and atrophic rat hearts. Circ. Res. 68, 984–996 (1991)

    Article  Google Scholar 

  74. Degens, H., Brouwer, K.F.J., Gilde, A.J., Lindhout, M., Willemsen, P.H.M., Janssen, B.J., van der Vusse, G.J., van Bilsen, M.: Cardiac fatty acid metabolism is preserved in the compensated hypertrophic rat heart. Basic Res. Cardiol. 101, 17–26 (2006)

    Article  Google Scholar 

  75. Mohammed, S.F., Storlie, J.R., Oehler, E.A., Bowen, L.A., Korinek, J., Lam, C.S.P., Simari, R.D., Burnett, J.C., Redfield, M.M.: Variable phenotype in murine transverse aortic constriction. Cardiovasc. Pathol. 21, 188–198 (2012)

    Article  Google Scholar 

  76. Humphrey, J.D., Rajagopal, K.R.: A constrained mixture model for growth and remodeling of soft tissues. Math. Models Methods Appl. Sci. 12, 407–430 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  77. Freeman, G.L., LeWinter, M.M.: Pericardial adaptations during chronic cardiac dilation in dogs. Circ. Res. 54, 294–300 (1984)

    Article  Google Scholar 

  78. Rodriguez, E.K., Hunter, W.C., Royce, M.J., Leppo, M.K., Douglas a, S., Weisman, H.F.: A method to reconstruct myocardial sarcomere lengths and orientations at transmural sites in beating canine hearts. Am. J. Physiol. 263, 293–306 (1992)

    Google Scholar 

  79. Guccione, J.M., O’Dell, W.G., McCulloch, A.D., Hunter, W.C.: Anterior and posterior left ventricular sarcomere lengths behave similarly during ejection. Am. J. Physiol. 272, 469–477 (1997)

    Google Scholar 

  80. Spotnitz, H.M., Sonnenblick, E.H., Spiro, D.: Relation of ultrastructure to function in the intact heart: sarcomere structure relative to pressure volume curves of intact left ventricles of dog and cat. Circ. Res. 18, 49–66 (1966)

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Hartwell Foundation (CMW) and the National Institutes of Health (U01 HL127654, JWH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey W. Holmes.

Electronic Supplementary Material

Below are the links to the electronic supplementary material.

Table S1: Summary of LV Radius and Thickness Changes in Response to Overload in Dogs and Rats (PDF 249 kB)

Table S2: Summary Myocyte Radius and Thickness Changes in Response to Overload in Dogs and Rats (PDF 214 kB)

10659_2017_9631_MOESM3_ESM.pdf

Figure S1: For each law we varied the maximum elastic fiber or cross-fiber stretch (i.e. end-diastolic stretch) or the minimum elastic fiber or cross-fiber stretch (i.e. the end-systolic stretch) over the ranges covered by our simulations and determined the growth rate that would occur in our simplified biaxial slab model. This turns out to be more straightforward for some laws than for others. KFR and KUR (A) predict isotropic growth based on end-diastolic fiber strain, but the growth rate for KUR is insensitive any previous growth (i.e. the y-axis is simply \({F_{g}^{i+1}} / {1}\)). For both KOM (B) and LT2 (C) the rates of fiber growth and cross-fiber growth are determined from inputs at different time points within the cardiac cycle. ART uses the ratio of maximum to minimum fiber stretch, so the behavior while varying one depends strongly on the value of the other (D). Finally, GEG and GCG laws use growth-limiting terms that alter the entire stretch-growth curve as growth progresses (F and G) (TIF 255 kB)

10659_2017_9631_MOESM4_ESM.pdf

Figure S2: The end-diastolic pressure (EDP) and end-diastolic segment length data from Fomovsky et al. [25] were used to estimate end-diastolic circumferential stretch relative to the unloaded state in normal dogs. A linear fit (solid line) was used to extrapolate segment length at an EDP of 1 mmHg. This value was considered the end-diastolic stretch in reference to the unloaded state. Only extrapolations with coefficients of variation <5.0% were used (TIF 231 kB)

10659_2017_9631_MOESM5_ESM.pdf

Figure S3: The number of growth time steps at which L&T, KFR, KUR, GEG and KOM all achieved steady state growth. LT2, GCG, and ART (dashed bars) produced divergent growth (\(F_{g} >20\) or \(F_{g} <0.05\)). Simulations for these laws were stopped early (at 2, 4, and 2 growth time steps, respectively) in order to match the mean radius-to-thickness ratio observed experimentally (TIF 43 kB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witzenburg, C.M., Holmes, J.W. A Comparison of Phenomenologic Growth Laws for Myocardial Hypertrophy. J Elast 129, 257–281 (2017). https://doi.org/10.1007/s10659-017-9631-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-017-9631-8

Keywords

Mathematics Subject Classification

Navigation