Skip to main content
Log in

A Helical Cauchy-Born Rule for Special Cosserat Rod Modeling of Nano and Continuum Rods

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

We present a novel scheme to derive nonlinearly elastic constitutive laws for special Cosserat rod modeling of nano and continuum rods. We first construct a 6-parameter (corresponding to the six strains in the theory of special Cosserat rods) family of helical rod configurations subjected to uniform strain along their arc-length. The uniformity in strain then enables us to deduce the constitutive laws by just solving the warping of the helical rod’s cross-section (smallest repeating cell for nanorods) but under certain constraints. The constraints are shown to be critical in the absence of which, the 6-parameter family reduces to a well known 2-parameter family of uniform helical equilibria. An explicit formula for the 6-parameter helical map is derived which maps atoms in the repeating cell of a nanorod to their images for the purpose of repeating cell energy minimization. A scheme for the passage from nano to continuum scale is also presented to derive the constitutive laws of a continuum rod via atomistic calculations of nanorods. The bending, twisting, stretching and shearing stiffnesses of diamond nanorods and carbon nanotubes are computed to demonstrate our theory. We show that our scheme is more general and accurate than existing schemes allowing us to deduce shearing stiffness and several coupling stiffnesses of a nanorod for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity. Springer, New York (1995)

    Book  MATH  Google Scholar 

  2. Arroyo, M., Belytschko, T.: An atomistic-based finite deformation membrane for single layer crystalline films. J. Mech. Phys. Solids 50, 1941–1977 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bozec, L., van der Heijden, G., Horton, M.: Collagen fibrils: nanoscale ropes. Biophys. J. 92, 70–75 (2007)

    Article  ADS  Google Scholar 

  4. Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42, 9458 (1990)

    Article  ADS  Google Scholar 

  5. Buehler, M., Kong, Y., Gao, H.: Deformation mechanisms of very long single-wall carbon nanotubes subject to compressive loading. J. Eng. Mater. Technol. 126, 245–249 (2004)

    Article  Google Scholar 

  6. Cai, W., Fong, W., Elsen, E., Weinberger, C.R.: Torsion and bending periodic boundary conditions for modeling the intrinsic strength of nanowires. J. Mech. Phys. Solids 56, 3242–3258 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Chandraseker, K., Mukherjee, S.: Coupling of extension and twist in single-walled carbon nanotubes. J. Appl. Mech. 73, 315–326 (2006)

    Article  ADS  MATH  Google Scholar 

  8. Chandraseker, K., Mukherjee, S., Paci, J.T., Schatz, G.C.: An atomistic-continuum Cosserat rod model of carbon nanotubes. J. Mech. Phys. Solids 57, 932–958 (2009)

    Article  ADS  Google Scholar 

  9. Chouaieb, N., Maddocks, J.H.: Kirchoff ’s problem of helical equilibria of uniform rods. J. Elast. 77, 221–247 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cowper, G.R.: The shear coefficient in Timoshenko’s beam theory. J. Appl. Mech. 33, 335–340 (1966)

    Article  ADS  MATH  Google Scholar 

  11. Ericksen, J.L.: Special topics in elastostatics. Adv. Appl. Mech. 17, 189–244 (1977)

    Article  ADS  MATH  Google Scholar 

  12. Ericksen, J.L.: On the Cauchy-Born rule. Math. Mech. Solids 13, 199–220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fang, C., Kumar, A., Mukherjee, S.: Finite element analysis of carbon nanotubes based on a rod model including in-plane cross-sectional deformation. Int. J. Solids Struct. 50, 49–56 (2013)

    Article  Google Scholar 

  14. Friesecke, G., James, R.D.: A scheme for the passage from atomic to continuum theory for thin film, nanotubes and nanorods. J. Mech. Phys. Solids 48, 1519–1540 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Gupta, P., Kumar, A.: Effect of material nonlinearity on Euler buckling of nanorods and nanotubes (2016, in preparation)

  16. Goriely, A., Tabor, M.: Spontaneous helix hand reversal and tendril perversion in climbing plants. Phys. Rev. Lett. 80, 1564 (1998)

    Article  ADS  Google Scholar 

  17. Gould, T., Burton, D.A.: A Cosserat rod model with microstructure. New J. Phys. 8, 137(1–17) (2006)

    Article  Google Scholar 

  18. Goyal, S., Perkins, C., Lee, C.L.: Nonlinear dynamics and loop formation in Kirchoff rods with implications to the mechanics of DNA and cables. J. Comp. Physiol. 209, 371–389 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Hakobyan, Y., Tadmor, E.B., James, R.D.: Objective quasicontinuum approach for rod problems. Phys. Rev. B 86, 245435 (2012)

    Article  ADS  Google Scholar 

  20. Healey, T.J.: Material symmetry and chirality in nonlinearly elastic rods. Math. Mech. Solids 7, 405–420 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hutchinson, J.R.: Shear coefficients for Timoshenko beam theory. J. Appl. Mech. 68, 87–92 (2001)

    Article  ADS  MATH  Google Scholar 

  22. James, R.D.: Objective structures. J. Mech. Phys. Solids 54, 2354–2390 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Klein, C.A., Cardinale, G.F.: Young’s modulus and Poisson’s ratio of CVD diamond. Diam. Relat. Mater. 2, 918–923 (1993)

    Article  ADS  Google Scholar 

  24. Kumar, A., Healey, T.J.: A generalized computational approach to stability of static equilibria of nonlinearly elastic rods in the presence of constraints. Comput. Methods Appl. Mech. Eng. 199, 1805–1815 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kumar, A., Mukherjee, S.: A geometrically exact rod model including in-plane cross-sectional deformation. J. Appl. Mech. 78, 011010 (2011)

    Article  ADS  Google Scholar 

  26. Kumar, A., Mukherjee, S., Paci, J.T., Chandraseker, K., Schatz, G.C.: A rod model for three dimensional deformations of single-walled carbon nanotubes. Int. J. Solids Struct. 48, 2849–2858 (2011)

    Article  Google Scholar 

  27. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover, New York (2000)

    Google Scholar 

  28. Manning, R.S., Maddocks, J.H., Kahn, J.D.: A continuum rod model of sequence-dependent DNA structure. J. Chem. Phys. 105, 5626 (1996)

    Article  ADS  Google Scholar 

  29. Miller, R., Shenoy, V.B.: Size-dependent elastic properties of nano-sized structural elements. Nanotechnology 11, 139–147 (2000)

    Article  ADS  Google Scholar 

  30. Miller, J.T., Lazarus, A., Audoly, B., Reis, P.M.: Shapes of a suspended curly hair. Phys. Rev. Lett. 112, 068103 (2014)

    Article  ADS  Google Scholar 

  31. Mora, M.G., Muller, S.: Derivation of the nonlinear bending-torsion theory for inextensible rods by \(\varGamma\)-convergence. Calc. Var. 18, 287–305 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Moroz, J.D., Nelson, P.: Torsional directed walks, entropic elasticity, and DNA twist stiffness. Proc. Natl. Acad. Sci. USA 94, 14418–14422 (1997)

    Article  ADS  Google Scholar 

  33. Palanthandalam-Madpusi, H.J., Goyal, S.: Robust estimation of nonlinear constitutive law from static equilibrium data for modeling the mechanics of DNA. Automatica 47, 1175–1182 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schmidt, B.: On the passage from atomic to continuum theory for thin films. Arch. Ration. Mech. Anal. 190, 1–55 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  35. Simo, J.C., Vu-Quoc, L.: A geometrically-exact rod model incorporating shear and torsion-warping deformation. Int. J. Solids Struct. 27, 371–393 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Singh, R., Kumar, S., Kumar, A.: Effect of anisotropy and intrinsic twist on coupled deformations in an elastic rod (2016, in preparation)

  37. Tadmor, E.B., Smith, G.S., Bernstein, N., Kaxiras, E.: Mixed finite element and atomistic formulation for complex crystals. Phys. Rev. B 59, 235–245 (1999)

    Article  ADS  Google Scholar 

  38. Tersoff, J.: Empirical interatomic potential for carbon, with applications to amorphous carbon. Phys. Rev. Lett. 61, 2879–2882 (1988)

    Article  ADS  Google Scholar 

  39. Timoshenko, S.P.: Strength of Materials, 2nd edn. Van Nostrand, Princeton (1940)

    MATH  Google Scholar 

  40. Upamanyu, M., Wang, H.L., Liang, H.Y., Mahajan, R.: Strain dependent twist stretch elasticity in chiral filaments. J. R. Soc. Interface 20, 303–310 (2008)

    Article  Google Scholar 

  41. Wang, M.D., Yin, H., Landick, R., Gelles, J., Block, S.M.: Stretching DNA with optical tweezers. Biophys. J. 72, 1335–1346 (1997)

    Article  ADS  Google Scholar 

  42. Yang, J.Z., Weinan, E.: Generalized Cauchy-Born rules for elastic deformations of plates, sheets and rods: Derivation of continuum models from atomistic models. Phys. Rev. B 74, 184110 (2006)

    Article  ADS  Google Scholar 

  43. Yoshikawa, M., Mori, Y., Maegawa, M., Katagiri, G., Ishida, H., Ishitani, A.: Raman scattering from diamond particles. Appl. Phys. Lett. 62, 3114 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers for their several useful suggestions. P. Gupta acknowledges support from the DST-INSPIRE fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajeet Kumar.

Appendices

Appendix A: Computing Inter-Atomic Energy of the Fundamental Domain (\(E_{FD}\)) and Its Derivatives

The energy of the fundamental domain depends on positions of the atoms within the FD as well as their images which lie within the cut-off radius. The locations of the image atoms are calculated using formula (27). Once we know these atomic locations, we can use a standard procedure to compute the inter-atomic energy of the fundamental domain. In order to minimize \(E_{FD}\) (see (30)) and also to deduce the constitutive laws (see (32) and (33)), we need to calculate the derivatives of \(E_{FD}\) with respect to atomic positions (\(\mathbf {x}_{j}\)) as well as strains which essentially implies computing the derivatives of atomic positions and their images (both \(\mathbf {x}_{j}\) and \(\mathbf{x}_{i,j}\)) with respect to \(\mathbf{x}_{j}\) and strains. The map (27) does not turn out to be useful for this purpose. In fact, the derivative of the map (27) with respect to the strain “\(\underline{\mathrm{k}}\)” (evaluated at zero strain) possesses a non-removable singularity. We, therefore, use the following formula equivalent to (27) for this purpose:

$$\begin{aligned} \mathbf{x}_{i,j}= \biggl( \int_{0}^{iL_{0}} \mathbf{R}_{s\theta} ds \biggr) \underline{\mathrm{v}} + (\mathbf{R}_{iL_{0}\theta } )\mathbf{x}_{j}. \end{aligned}$$
(45)

From (45), we note that computing the derivatives of \(\mathbf{x}_{i,j}\) with respect to \(\mathbf{x}_{j}\) and \(\underline{\mathrm{v}}\) are straightforward. However, computing the derivatives with respect to \(\underline{\mathrm{k}}\) necessitates taking derivatives of the rotation matrix (as well as its integral) with respect to \(\underline{\mathrm{k}}\). Analytical formulas for these derivatives are now presented for the readers’ convenience.

Appendix B: Derivative of Atomic Positions with Respect to Strains

From (45), the derivatives of \(\mathbf {x}_{i,j}\) with respect to strains follow as:

$$\begin{aligned} \begin{aligned} \frac{\partial\mathbf{x}_{i,j}}{\partial{\underline{\mathrm{v}}}}&= \int_{0}^{iL_{0}}\mathbf{R}_{s\theta} ds, \\ \frac{\partial^{2}\mathbf{x}_{i,j}}{\partial{\underline{\mathrm{v}}}^{2}}&= \mathbf{0}, \\ \frac{\partial^{2}\mathbf{x}_{i,j}}{\partial{\underline{\mathrm{v}}}\partial{\underline{\mathrm{k}}}}&= \int_{0}^{iL_{0}}\frac{\partial\mathbf{R}_{s\theta}}{\partial{\underline{\mathrm{k}}}} ds, \\ \frac{\partial\mathbf{x}_{i,j}}{\partial{\underline{\mathrm{k}}}} &= \biggl( \int_{0}^{iL_{0}}\frac{\partial\mathbf{R}_{s\theta}}{\partial {\underline{\mathrm{k}}}} ds \biggr) \underline{\mathrm{v}} + \frac{\partial\mathbf{R}_{iL_{0}\theta }}{\partial{\underline{\mathrm{k}}}}\mathbf{x}_{j}, \\ \frac{\partial^{2}\mathbf{x}_{i,j}}{\partial{\underline{\mathrm{k}}}^{2}} &= \biggl( \int_{0}^{iL_{0}}\frac{\partial^{2}\mathbf{R}_{s\theta }}{\partial{\underline{\mathrm{k}}}^{2}} ds \biggr) \underline{\mathrm{v}} + \frac{\partial^{2}\mathbf{R}_{iL_{0}\theta }}{\partial{\underline{\mathrm{k}}}^{2}}\mathbf{x}_{j}. \end{aligned} \end{aligned}$$
(46)

Now, we show the derivatives of the rotation matrix as well as its integral with respect to \(\underline{\mathrm{k}}\). Let \(\psi= \vert\underline{\mathrm{k}}\vert\), \(\underline{\mathrm{u}}=\frac{\underline{\mathrm{k}}}{\psi}\) denote the axis of rotation and \(\theta= s\psi\) be the angle of rotation. Also, let \([\underline{\mathrm{u}} ] _{\times}\) and \([\mathbf {e}_{i} ]_{\times}\) denote the skew symmetric matrices whose axial vectors are \(\underline{\mathrm{u}}\) and \(\mathbf {e}_{i}\) respectively. Note that the definition of \(\theta\) here is different from the earlier definition but simplify our notations below. Using Rodrigues’ formula for rotation, we get

$$ \mathbf{R}(s) =\exp(s\underline{\underline{\mathrm{K}}}) = \cos(\theta ) \mathbf{I}+ \sin(\theta) [\underline{\mathrm{u}} ] _{\times} +\bigl(1-\cos( \theta)\bigr)\underline{\mathrm{u}} \otimes\underline {\mathrm{u}}. $$
(47)

Now, \(\underline{\mathrm{u}}\) being a constant, Rodrigues’ formula (47) can be integrated analytically which is shown below in (48). The formulas for the derivatives of (47) and (48) are also shown below. Since these formulas contain a removable singularity at \(\theta= 0\), a Taylor expanded version (with singularity removed) is used in such situations.

$$\begin{aligned} \int\mathbf{R} =& s \biggl(\frac{\sin(\theta)}{\theta}\mathbf{I}+ \frac{1-\cos(\theta )}{\theta} [ \underline{\mathrm{u}} ]_{\times}+\frac{\theta-\sin(\theta)}{\theta} \underline {\mathrm{u}} \otimes\underline{\mathrm{u}} \biggr), \\ =&s \biggl(\biggl(1-\frac{\theta^{2}}{6}\biggr)\mathbf{I}+\frac{\theta }{2} \biggl(1-\frac{\theta^{2}}{12} \biggr) [ \underline{\mathrm{u}} ]_{\times} + \frac{\theta^{2}}{6}\biggl(1-\frac{\theta^{2}}{20}\biggr)\underline{\mathrm{u}}\otimes \underline{ \mathrm{u}} \biggr) \quad(\mbox{if } \theta\approx0), \\ =&s\mathbf{I}\quad(\mbox{if} \ \theta=0). \end{aligned}$$
(48)
$$\begin{aligned} \frac{\partial\mathbf{R}}{\partial k_{i}} =& s \biggl[-\sin(\theta )\mathrm{u}_{i}\mathbf{I}+ \frac{\cos(\theta)\theta- \sin(\theta)}{\theta} \mathrm{u}_{i} [\underline{\mathrm{u}} ]_{\times} + \frac{\sin(\theta)}{\theta} [\mathbf{e}_{i} ]_{\times } \\ &{}+ \frac{\sin(\theta)\theta-2(1-\cos(\theta))}{\theta} \mathrm{u}_{i} \underline{\mathrm{u}} \otimes \underline{\mathrm{u}}+ \frac{1-\cos(\theta)}{\theta} (\mathbf {e}_{i} \otimes \underline{\mathrm{u}} +\underline{\mathrm{u}}\otimes\mathbf{e}_{i} ) \biggr], \\ =& s \biggl[-\sin(\theta)\mathrm{u}_{i}\mathbf{I} -\frac{\theta^{2}}{3} \biggl(1-\frac{\theta^{2}}{10}\biggr) \mathrm{u}_{i} [\underline{\mathrm{u}} ]_{\times} + \biggl(1-\frac{\theta^{2}}{6}+\frac{\theta^{4}}{120}\biggr) [ \mathbf {e}_{i} ]_{\times}-\frac{ \theta^{3}}{12} \mathrm{u}_{i} \underline{\mathrm{u}} \otimes \underline{\mathrm{u}} \\ &{}+\frac{\theta}{2}\biggl(1-\frac{\theta^{2}}{12}\biggr) (\mathbf {e}_{i}\otimes \underline{\mathrm{u}} +\underline{\mathrm{u}}\otimes \mathbf{e}_{i} ) \biggr] \quad (\mbox{if } \theta\approx0), \\ =&s [\mathbf{e}_{i} ]_{\times} \quad(\mbox{if } \theta= 0). \end{aligned}$$
(49)
$$\begin{aligned} \int\frac{\partial\mathbf{R}}{\partial k_{i}} =&s^{2} \biggl(\frac{\cos(\theta)\theta-\sin(\theta)}{\theta ^{2}} \mathrm{u}_{i}\mathbf{I}+ \frac{\theta \sin(\theta)-2(1-\cos(\theta))}{\theta^{2}}\mathrm{u}_{i} [ \underline {\mathrm{u}} ]_{\times} + \frac{1-\cos(\theta)}{\theta^{2}} [ \mathbf{e}_{i} ]_{\times } \\ &{}+\frac{3\sin(\theta)-2\theta-\cos(\theta)\theta}{\theta^{2}}\mathrm{u}_{i}\underline{ \mathrm{u}} \otimes \underline{\mathrm{u}} + \frac{\theta-\sin(\theta)}{\theta^{2}}(\mathbf{e}_{i}\otimes \underline {\mathrm{u}}+\underline {\mathrm{u}} \otimes\mathbf{e}_{i}) \biggr), \\ =&s^{2} \biggl(-\frac{\theta}{3}\biggl(1-\frac{\theta^{2}}{10} \biggr)\mathrm{u}_{i}\mathbf{I}-\frac{ \theta^{2}}{12} \mathrm{u}_{i} [\underline{\mathrm{u}} ]_{\times}+\frac {1}{2} \biggl(1-\frac{ \theta^{2}}{12}\biggr) [ \mathbf{e}_{i} ]_{\times}- \frac{1}{60}\theta^{3}\mathrm{u}_{i}\underline{ \mathrm{u}} \otimes\underline{\mathrm{u}} \\ &{}+\frac{\theta}{6}\biggl(1-\frac{\theta^{2}}{20}\biggr) (\mathbf{e}_{i} \otimes \underline{\mathrm{u}} +\underline{\mathrm{u}} \otimes\mathbf{e}_{i}) \biggr) \quad(\mbox{if } \theta\approx 0), \\ =& \frac{s^{2}}{2} [\mathbf{e}_{i} ]_{\times} \quad(\mbox{if } \theta= 0). \end{aligned}$$
(50)

Similarly, the second derivative of the rotation matrix and its integral can be obtained.

Appendix C: Derivative of \([ \{\hat{\mathbf{x}}_{j} \},\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol{\delta}}]\) with Respect to Strains

In this section, we first derive an expression for the derivative of \([ \{\hat{\mathbf{x}}_{j} \},\hat{ \boldsymbol{\lambda}}, \hat{\boldsymbol{\delta}}]\) with respect to strains and finally show that the second term in Eq. (32)(a) vanishes, i.e.,

$$\begin{aligned} \biggl\{ \frac{\partial E_{FD}}{\partial\mathbf{x}_{j}} \biggr\} \bigg\vert _{(\underline{\mathrm{v}},\underline{\mathrm{k}})}\cdot \biggl\{ \frac{\partial \hat{\mathbf{x}}_{j}}{\partial[\underline{\mathrm{v}},\underline {\mathrm{k}}]} \biggr\} =\mathbf{0}. \end{aligned}$$
(51)

We first observe that (30) holds at all strains. Differentiating the three equations in (30) with respect to strains, we then obtain

$$ \frac{\partial^{2}E_{\mathit{cons}}}{\partial[ \{\mathbf{x}_{j} \} ,\boldsymbol{\lambda}, \boldsymbol{\delta}]\partial[\underline{\mathrm{v}},\underline{\mathrm{k}}]} + \frac{\partial^{2} E_{\mathit{cons}}}{\partial[ \{\mathbf{x}_{j} \},\boldsymbol{\lambda}, \boldsymbol{\delta}]^{2}}\frac{\partial[ \{\hat{\mathbf {x}}_{j} \},\hat{ \boldsymbol{\lambda}}, \hat{\boldsymbol{\delta}}]}{\partial[\underline{\mathrm{v}},\underline{\mathrm{k}}]}= \mathbf{0}. $$
(52)

Let us define a stiffness matrix \(\mathbf{K}^{3m\times3m}\) and the linearized constraint matrix \(\mathbf{C}^{3m\times6}\) such that its block-components are as shown below:

$$\begin{aligned} \mathbf{K}_{ij}^{3\times3} = \frac{\partial^{2} E_{FD}}{\partial \mathbf{x}_{i} \partial\mathbf{x}_{j}}, \quad \mathbf{C}_{i}^{3\times6} = \biggl[\frac{\partial^{2} E_{\mathit{cons}}}{\partial\mathbf{x}_{i}\partial\boldsymbol{\lambda}} \frac{\partial^{2} E_{\mathit{cons}}}{\partial\mathbf{x}_{i}\partial \boldsymbol{\delta}} \biggr]= \bigl[ \mathbf{I}^{3\times3} \quad \underline{\underline{x_{i}}}^{3\times3} \bigr] . \end{aligned}$$
(53)

Here \(\mathbf{I}\) is an identity matrix whereas

$$\underline {\underline{x_{i}}}= \left[\textstyle\begin{array}{c@{\quad}c@{\quad}c} 0 & x_{i,3} & x_{i,2}\\ x_{i,3} & 0 & x_{i,1}\\ x_{i,2} & x_{i,1} & 0 \end{array}\displaystyle \right] $$

is a matrix formed by three components of the position vector of \(i\)th atom. We can then write (52) in the following matrix form:

$$ \begin{bmatrix} \{\mathbf{K}_{ij}+\delta_{ij}\underline{\underline{\delta }} \}^{3m\times3m} & \mathbf{C}^{3m\times6}\\ \mathbf{C}^{T} & \mathbf{0}^{6\times6} \end{bmatrix} \begin{bmatrix} \bigl\{ \frac{\partial\hat{\mathbf{x}}_{i}}{\partial [\underline{\mathrm{v}},\underline{\mathrm{k}}]} \bigr\} ^{3m\times6}\\ \frac{\partial[\hat{\boldsymbol{\lambda}}, \hat{\boldsymbol {\delta}}]}{\partial [\underline{\mathrm{v}},\underline{\mathrm{k}}]}^{6\times6} \end{bmatrix} = - \begin{bmatrix} \bigl\{ \frac{\partial^{2} E_{FD}}{\partial \mathbf{x}_{i}\partial[\underline{\mathrm{v}},\underline{\mathrm{k}}]} \bigr\} ^{3m\times6} \\ \mathbf{0}^{6\times6} \end{bmatrix} . $$
(54)

Equation (54) can be inverted to obtain the derivatives of \([ \{\hat{\mathbf{x}}_{j} \},\hat{ \boldsymbol{\lambda}},\hat{\boldsymbol{\delta}}]\) with respect to strains. Now, upon block multiplication in (54), we see that \(\mathbf{C}^{T} \bigl\{\frac{\partial\hat{\mathbf {x}}_{i}}{\partial [\underline{\mathrm{v}},\underline{\mathrm{k}}]} \bigr\} = \mathbf{0}\). This further implies that \(\bigl \{\frac{\partial\hat{\mathbf {x}}_{i}}{\partial [\underline{\mathrm{v}},\underline{\mathrm{k}}]} \bigr\}\) is perpendicular to columns of \(\mathbf{C}\). Using Q-R factorization of \(\mathbf{C}\), we then obtain

$$\begin{aligned} \mathbf{C}= \bigl[ \mathbf{Q}1^{3m\times6} \quad \mathbf{Q}2^{3m\times(3m-6)} \bigr] \bigl[\mathbf{R}1^{6\times6} \quad \mathbf{0}^{6\times(3m-6)} \bigr] ^{T} =\mathbf{Q}1\ \mathbf{R}1\Rightarrow \biggl\{ \frac{\partial\hat {\mathbf{x}}_{i}}{\partial [\underline{\mathrm{v}},\underline{\mathrm{k}}]} \biggr\} = \mathbf{Q2} \ \mathbf{z}^{3m-6}. \end{aligned}$$
(55)

Upon pre-multiplying the first set of block equations in (54) by \(\mathbf{Q2}^{T}\) and substituting (55), we then obtain

$$\begin{aligned} \bigl(\mathbf{Q2}^{T} \{\mathbf{K}_{ij}+ \delta_{ij}\underline {\underline{\delta}} \}\mathbf{Q2} \bigr) \mathbf{z} =& -\mathbf{Q2}^{T} \biggl\{ \frac{\partial^{2} E_{FD}}{\partial \mathbf{x}_{i}\partial[\underline{\mathrm{v}},\underline{\mathrm{k}}]} \biggr\} \\ \Rightarrow \biggl\{ \frac{\partial\hat{\mathbf{x}}_{i}}{\partial [\underline{\mathrm{v}},\underline{\mathrm{k}}]} \biggr\} =& -\mathbf{Q2} \bigl( \mathbf{Q2}^{T} \{\mathbf{K}_{ij}+\delta _{ij} \underline{\underline{\delta}} \}\mathbf{Q2} \bigr)^{-1} \mathbf{Q2}^{T} \biggl\{ \frac{\partial^{2} E_{FD}}{\partial \mathbf{x}_{i}\partial[\underline{\mathrm{v}},\underline{\mathrm{k}}]} \biggr\} . \end{aligned}$$
(56)

Now using (30) and (53), we get:

$$\begin{aligned} \biggl\{ \frac{\partial E_{\mathit{cons}}}{\partial{\mathbf{x}_{i}}} \biggr\} = \biggl\{ \frac{\partial E_{FD}}{\partial{\mathbf{x}_{i}}} \biggr\} + \mathbf{C} \begin{bmatrix} \boldsymbol{\lambda}\\ \boldsymbol{\delta} \end{bmatrix} \Rightarrow \mathbf{Q2}^{T} \biggl\{ \frac{\partial E_{\mathit{cons}}}{\partial {\mathbf{x}_{i}}} \biggr\} = \mathbf{Q2}^{T} \biggl\{ \frac{\partial E_{FD}}{\partial{\mathbf {x}_{i}}} \biggr\} . \end{aligned}$$
(57)

Finally,

$$\begin{aligned} \biggl\{ \frac{\partial E_{FD}}{\partial\mathbf{x}_{i}} \biggr\} \cdot \biggl\{ \frac{\partial\hat{\mathbf{x}}_{i}}{\partial [\underline{\mathrm{v}},\underline{\mathrm{k}}]} \biggr\} =& \biggl\{ \frac{\partial E_{FD}}{\partial{\mathbf{x}_{i}}} \biggr\} \cdot \mathbf{Q2} \bigl(\mathbf{Q2}^{T} \{\mathbf{K}_{ij}+ \delta_{ij}\underline {\underline{\delta}} \}\mathbf{Q2} \bigr)^{-1}\mathbf {Q2}^{T} \biggl\{ \frac{\partial^{2} E_{FD}}{\partial \mathbf{x}_{i}\partial[\underline{\mathrm{v}},\underline{\mathrm{k}}]} \biggr\} \\ =&\mathbf{Q2}^{T} \biggl\{ \frac{\partial E_{\mathit{cons}}}{\partial{\mathbf {x}_{i}}} \biggr\} \cdot \bigl( \mathbf{Q2}^{T} \{\mathbf{K}_{ij}+\delta_{ij} \underline {\underline{\delta}} \}\mathbf{Q2} \bigr)^{-1}\mathbf {Q2}^{T} \biggl\{ \frac{\partial^{2} E_{FD}}{\partial \mathbf{x}_{i}\partial[\underline{\mathrm{v}},\underline{\mathrm{k}}]} \biggr\} \\ =&\mathbf{0}\quad(\mbox{using (57) and (30)(a)}). \end{aligned}$$
(58)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Kumar, S. & Gupta, P. A Helical Cauchy-Born Rule for Special Cosserat Rod Modeling of Nano and Continuum Rods. J Elast 124, 81–106 (2016). https://doi.org/10.1007/s10659-015-9562-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9562-1

Keywords

Mathematics Subject Classification

Navigation