Skip to main content
Log in

The Second-Order L 2-Flow of Inextensible Elastic Curves with Hinged Ends in the Plane

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

In this article, we study the evolution of open inextensible planar curves with hinged ends. We obtain long time existence of C -smooth solutions during the evolution, given the initial curves that are only C 2-smooth with vanishing curvature at the boundary. Moreover, the asymptotic limits of this flow are inextensible elasticae. Our method and result extend the work by Wen (Duke Math. J. 70(3):683–698, 1993).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angenent, S.: On the formation of singularities in the curve shortening flow. J. Differ. Geom. 33(3), 601–633 (1991)

    MATH  MathSciNet  Google Scholar 

  2. Antman, S.S.: Nonlinear Problems of Elasticity, 2nd edn. Applied Mathematical Sciences, vol. 107. Springer, New York (2005)

    MATH  Google Scholar 

  3. Bryant Robert, R., Griffiths, P.: Reduction for constrained variational problems and \(\int\frac {1}{2}\vec{\kappa}^{2}ds\). Am. J. Math. 108(3), 525–570 (1986)

    Article  MATH  Google Scholar 

  4. Brunnett, G., Wendt, J.: Elastic splines with tension control. In: Mathematical Methods for Curves and Surfaces, II, Lillehammer, 1997. Innov. Appl. Math., pp. 33–40. Vanderbilt Univ. Press, Nashville (1998)

    Google Scholar 

  5. Cannon, J.R.: The One-Dimensional Heat Equation. Encyclopedia of Mathematics and Its Applications, vol. 23. Addison-Wesley, Reading (1984). Advanced Book Program. With a foreword by Felix E. Browder

    Book  MATH  Google Scholar 

  6. Dall’Acqua, A., Pozzi, P.: A Willmore–Helfrich L 2-flow of curves with natural boundary conditions. Commun. Anal. Geom. 22(4), 617–669 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dall’Acqua, A., Lin, C.-C., Pozzi, P.: Evolution of open elastic curves in \(\mathbb{R}^{n}\) subject to fixed length and natural boundary conditions. Analysis (Berlin) 34(2), 209–222 (2014)

    MATH  MathSciNet  Google Scholar 

  8. Dall’Acqua, A., Lin, C.-C., Pozzi, P.: A gradient flow for open elastic curves with fixed length and clamped ends. Preprint (2014)

  9. Dziuk, G., Kuwert, E., Schätzle, R.: Evolution of elastic curves in \(\mathbb{R}^{n}\), existence and computation. SIAM J. Math. Anal. 33(5), 1228–1245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gage, M., Hamilton, R.S.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23(1), 69–96 (1986)

    MATH  MathSciNet  Google Scholar 

  11. Golomb, M., Jerome, J.: Equilibria of the curvature functional and manifolds of nonlinear interpolating spline curves. SIAM J. Math. Anal. 13, 421–458 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hearst, J.E., Shi, Y.: The elastic rod provides a model for DNA and its functions. In: Mathematical Approaches to Biomolecular Structure and Dynamics, Minneapolis, MN, 1994. IMA Vol. Math. Appl., vol. 82, pp. 59–70. Springer, New York (1996)

    Chapter  Google Scholar 

  13. Koiso, N.: On the motion of a curve towards elastica. In: Actes de la Table Ronde de Géométrie Différentielle, Luminy, 1992. Sémin. Congr., vol. 1, pp. 403–436. Soc. Math. France, Paris (1996)

    Google Scholar 

  14. Langer, J., Singer, D.A.: Curve straightening and a minimax argument for closed elastic curves. Topology 24(1), 75–88 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Langer, J., Singer, D.A.: Lagrangian aspects of the Kirchhoff elastic rod. SIAM Rev. 38(4), 605–618 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lin, C.-C.: L 2-flow of elastic curves with clamped boundary conditions. J. Differ. Equ. 252(12), 6414–6428 (2012)

    Article  ADS  MATH  Google Scholar 

  17. Linnér, A.: Some properties of the curve straightening flow in the plane. Trans. Am. Math. Soc. 314(2), 605–618 (1989)

    Article  MATH  Google Scholar 

  18. Mumford, D.: Elastica and Computer Vision, West Lafayette, IN, 1990. Algebraic Geometry and Its Applications, pp. 491–506. Springer, New York (1994)

    Google Scholar 

  19. Novaga, M., Okabe, S.: Curve shortening–straightening flow for non-closed planar curves with infinite length. J. Differ. Equ. 256(3), 1093–1132 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Oelz, D., Schmeiser, C.: Derivation of a model for symmetric lamellipodia with instantaneous cross-link turnover. Arch. Ration. Mech. Anal. 198(3), 963–980 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  21. Oelz, D.: On the curve straightening flow of inextensible, open, planar curves. SeMA Journal 54, 5–24 (2011)

    Article  MathSciNet  Google Scholar 

  22. Polden, A.: Curves and surfaces of least total curvature and fourth-order flows. Ph.D. dissertation, Universität Tübingen, Tübingen, Germany (1996)

  23. Starostin, E.L., van der Heijden, G.H.M.: The shape of a Möbius strip. Nat. Mater. 6, 563–567 (2007)

    Article  Google Scholar 

  24. Wen, Y.: L 2 flow of curve straightening in the plan. Duke Math. J. 70(3), 683–698 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wen, Y.: Curve straightening flow deforms closed plane curves with nonzero rotation number to circles. J. Differ. Equ. 120(1), 89–107 (1995)

    Article  ADS  MATH  Google Scholar 

  26. Willmore, T.: Curves. In: Handbook of Differential Geometry, vol. I, pp. 997–1023. North-Holland, Amsterdam (2000) (English summary)

    Google Scholar 

Download references

Acknowledgements

During working on this project, C.-C. Lin was supported by the National Science Council of Taiwan NSC 101-2115-M-003-002 and the National Center for Theoretical Sciences in Taipei, Taiwan; and Y.-K. Lue was supported by MOST 103-2811-M-003-008. The authors also want to thank the referees for useful comments and corrections toward improving the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Chi Lin.

Appendix

Appendix

Lemma 13

Let \(\ell\in\mathbb{N}\), and

$$\begin{aligned} \gamma_{\ell}(s,t) :=\int_{0}^{t}\int _{-\infty}^{\infty} \partial_s^{\ell}K(s- \xi,t-\tau) \cdot(h\circ\varphi) (\xi,\tau) d\xi d\tau . \end{aligned}$$

Then, under the assumption in Lemma  10, \(\gamma_{\ell}: D_{0}^{b}\rightarrow\mathbb{R}\) is well-defined for any ∈{1,2,…,m+1}. Moreover, for any δ∈(0,t), the following properties hold,

$$\begin{aligned} \bigl\vert \gamma_\ell(s,t)\bigr\vert &\leq C_{\ell}^{\prime\prime} (b, \delta) ,\quad \forall (s, t)\in D_\delta^b , \end{aligned}$$
(4.1)
$$\begin{aligned} \bigl\vert \gamma_\ell(s_2, t) - \gamma_\ell(s_1, t) \bigr\vert &\le C_{\ell}^{\prime\prime} (b, \delta) \cdot |s_2-s_1| ,\quad \forall (s_1, t), (s_2, t) \in D_\delta^b , \end{aligned}$$
(4.2)
$$\begin{aligned} \gamma_\ell &\in C^{0}\bigl(D_0^b \bigr) , \end{aligned}$$
(4.3)

where \(C_{\ell}^{\prime\prime}(b, \delta)\) is a constant.

Proof

Note that since \(\varphi\in\mathfrak{B}_{b}^{L}(d_{0},M_{0})\), we may apply (3.34), (3.32), (3.33), and (3.20), and verify easily that, for any ∈{1,2,…,m},

$$\begin{aligned} \partial_\xi^\ell(h\circ\varphi) &\in C^{0} \bigl(D_0^b\bigr) , \\ \bigl|\partial_\xi^\ell(h\circ\varphi) (\xi, \tau)\bigr| &\le C( \ell, b, \delta) , \end{aligned}$$
(4.4)
$$\begin{aligned} \bigl|\partial_\xi^\ell(h\circ\varphi) (\xi_2, \tau)-\partial_\xi^\ell(h\circ \varphi) (\xi_1, \tau)\bigr| &\le C (\ell, b, \delta)\cdot|\xi_2 -\xi_1| , \end{aligned}$$
(4.5)

for all \((\xi,\tau)\in D_{\delta}^{b}\), \((\xi_{i},\tau) \in D_{\delta}^{b}\), i∈{1,2}, and some positive constants C(,b,δ). For convenience, we may assume without loss of generality that, for fixed and b, C(,b,δ)↗+∞ as δ↘+0.

From the definition of fundamental solution K in (3.12), it is easy to verify that K is infinitely differentiable in \(\mathbb{R}\times(0, \infty)\) and its derivatives of any order is uniformly bounded in \(\mathbb{R}\times[\epsilon, \infty)\) for any fixed ϵ>0. In fact, for any \(k\in\mathbb{N}\),

$$\begin{aligned} \partial_x^k K(x,t)=P_t^k(x) \cdot K(x,t), \end{aligned}$$
(4.6)

where \(P_{t}^{k}(x)\) is a polynomial of degree k whose coefficients depend continuously on t and could tend to infinity only if t→+0. From using (4.6), it is easy to verify that, for any fixed t>0, \(s\in\mathbb{R}\), and t 1,t 2≥0,

$$\begin{aligned} &\int_{-\infty}^{\infty} \bigl\vert \partial_s^k K(s-\xi,t)\bigr\vert d \xi< C_K(k,t) , \end{aligned}$$
(4.7)
$$\begin{aligned} &\int_{t_1}^{t_2}\int_{-\infty}^{\infty} \bigl\vert \partial_s K(s-\xi,\tau)\bigr\vert d\xi d\tau = \frac{2(\sqrt{t_2}-\sqrt{t_1})}{\sqrt{\pi}} , \end{aligned}$$
(4.8)

where the constant C K (k,t)→+∞ as t→+0.

To show (4.1) when ∈{1,2,…,m+1}, observe that, with a change of variables and an integration by parts with respect to the space variables,

$$\begin{aligned} \gamma_{\ell}(s,t) &=\int_{0}^{\epsilon^\prime}\int _{-\infty}^{\infty} \partial_s^\ell K(s-\xi,t-\tau) \cdot(h\circ\varphi) (\xi,\tau) d\xi d\tau \\ & \quad{} +\int_{\epsilon^\prime}^{t}\int_{-\infty}^{\infty} \partial_s^{\ell-1}K(s-\xi,t-\tau) \cdot\frac{\partial(h\circ\varphi )}{\partial\xi}( \xi,\tau) d\xi d\tau \\ & \quad{} - \int_{\epsilon^\prime}^{t} \bigl[ \partial_s^{\ell-1}K(s-\xi,t-\tau) \cdot(h\circ\varphi) (\xi, \tau) \bigr]_{-\infty}^{\infty} d\tau , \end{aligned}$$
(4.9)

for any fixed ϵ′∈(0,t). Note that, for any fixed τ∈(ϵ′,t), one can infer from (4.6) and (3.20) that the integrand in the last term is null. As we continue to integrate by parts in (4.9), using (4.4) and the property of exponentially vanishing rate of \([\partial_{s}^{j}K](x, t^{\prime})\), we obtain that

$$\begin{aligned} \gamma_{\ell}(s,t) &=\int_{0}^{\epsilon^\prime}\int _{-\infty}^{\infty} \partial_s^\ell K(s-\xi,t-\tau) \cdot(h\circ\varphi) (\xi,\tau) d\xi d\tau \\ & \quad{} +\int_{\epsilon^\prime}^{t}\int_{-\infty}^{\infty} \partial_s K(s-\xi,t-\tau) \cdot\bigl[\partial_\xi^{\ell-1}(h \circ\varphi )\bigr](\xi,\tau) d\xi d\tau \end{aligned}$$
(4.10)

for any ∈{1,2,…,m+1} and any fixed ϵ′∈(0,t). Now, (4.1) follows on applying (3.20), (4.4), (4.7), and (4.8). Furthermore, since (4.1) holds for any δ∈(0,b), \(\gamma_{\ell}: D_{0}^{b}\rightarrow\mathbb{R}\) is well-defined.

To show (4.2), we use the formula (4.10) and write

$$\begin{aligned} &\gamma_{m+1}(s_2, t) - \gamma_{m+1}(s_1, t) \\ &\quad=\int_{0}^{\epsilon^\prime}\int_{-\infty}^{\infty} \bigl( \partial_s^{m+1} K(s_2-\xi,t-\tau) - \partial_s^{m+1} K(s_1-\xi,t-\tau) \bigr) \\ & \qquad{} \cdot(h\circ\varphi) (\xi,\tau) d\xi d\tau \\ &\qquad{} +\int_{\epsilon^\prime}^{t}\int_{-\infty}^{\infty} \bigl( \partial_s K(s_2-\xi,t-\tau) - \partial_s K(s_1-\xi,t-\tau) \bigr) \\ &\qquad{} \cdot \partial_\xi^{m}(h\circ \varphi) (\xi,\tau) d\xi d\tau , \end{aligned}$$
(4.11)

for some fixed ϵ′∈(0,t). The first integral in (4.11) can be rewritten as

$$\begin{aligned} \int_{0}^{\epsilon^\prime}\int_{-\infty}^{\infty} \int_{s_1}^{s_2} \partial_s^{m+2} K(s-\xi,t-\tau) \cdot(h\circ\varphi) (\xi,\tau) ds d\xi d\tau . \end{aligned}$$
(4.12)

For fixed t,τ satisfying tτtϵ′>0, one can conclude from (4.6) and (3.20) that the function \(K_{(t,\tau)}^{m+2}(\xi,s):=\partial_{s}^{m+2} K(s-\xi,t-\tau) \cdot (h\circ\varphi)(\xi,\tau)\) is uniformly bounded, integrable over the subset \(\mathbb{R}\times [s_{1},s_{2}]\subset\mathbb{R}^{2}\) and

$$\begin{aligned} \iint_{\mathbb{R}\times[s_1,s_2]} \bigl\vert K_{(t,\tau)}^{m+2}(\xi,s) \bigr\vert d(\xi,s) < +\infty . \end{aligned}$$
(4.13)

By using Fubini’s Theorem, the integral in (4.12) can be written as

$$\begin{aligned} \int_{0}^{\epsilon^\prime}\int_{s_1}^{s_2} \int_{-\infty}^{\infty} \partial_s^{m+2} K(s-\xi,t-\tau) \cdot(h\circ\varphi) (\xi,\tau) d\xi ds d\tau . \end{aligned}$$
(4.14)

The second integral in (4.11) can be written as

$$\begin{aligned} &\int_{\epsilon^\prime}^{t}\int_{-\infty}^{\infty} \partial_s K \bigl(s_1-\xi^\prime,t-\tau\bigr) \\ &\quad{} \cdot \bigl[ \partial_{\xi^\prime}^{m} (h\circ\varphi) \bigl(\xi^\prime+\Delta s,\tau\bigr) - \partial_{\xi^\prime}^{m} (h\circ\varphi) \bigl(\xi^\prime, \tau\bigr) \bigr] d\xi^\prime d\tau , \end{aligned}$$
(4.15)

by the change of variables, ξ′=ξ−Δs, where Δs:=s 2s 1≥0. Thus, by applying (3.20), (4.7) to the integral (4.14), and by applying (4.5), (4.8) to the integral (4.15), we obtain

$$\begin{aligned} &\bigl\vert \gamma_{m+1}(s_2, t) - \gamma_{m+1}(s_1, t)\bigr\vert \\ &\quad\le \Delta s \cdot \biggl( C_{K}\bigl(m+2, t- \epsilon^\prime\bigr) \cdot2C_3 \cdot\epsilon^\prime + C(m, t, \delta) \cdot\bigl(t-\epsilon^\prime\bigr) \cdot \frac{2(\sqrt{t}-\sqrt{\epsilon^\prime})}{\sqrt{\pi}} \biggr) . \end{aligned}$$
(4.16)

Therefore, (4.16) implies the continuity of γ m+1 in the domain \(D_{0}^{b}\) along the s-direction, i.e., we have proved (4.2).

To show (4.3), we only need to prove the continuity of γ m+1 at any point in \(D_{0}^{b}\) along the t-direction, because of the result in (4.2). Now, for a fixed t 1∈(0,b), we assume that ϵ>0 satisfies

$$\begin{aligned} b>t_1+\epsilon>t_1-\epsilon>0 \end{aligned}$$
(4.17)

and choose t 2t 1 so that

$$\begin{aligned} |t_2-t_1|< \epsilon/2 . \end{aligned}$$
(4.18)

From using (4.10), we write

$$\begin{aligned} &\gamma_{m+1}(s, t_2) - \gamma_{m+1}(s, t_1) \\ &\quad=\int_{0}^{t_1-\epsilon}\int_{-\infty}^{\infty} \bigl( \partial_s^{m+1} K(s-\xi, t_2-\tau) - \partial_s^{m+1} K(s-\xi, t_1-\tau) \bigr) \\ &\qquad{} \cdot(h\circ\varphi) (\xi,\tau) d\xi d\tau \\ &\qquad{} +\int_{t_1-\epsilon}^{t_2}\int_{-\infty}^{\infty} \partial_s K(s-\xi, t_2-\tau) \cdot \partial_\xi^{m}(h\circ\varphi) (\xi,\tau) d\xi d\tau \\ &\qquad{} - \int_{t_1-\epsilon}^{t_1}\int_{-\infty}^{\infty} \partial_s K(s-\xi, t_1-\tau) \cdot \partial_\xi^{m}(h\circ\varphi) (\xi,\tau) d\xi d\tau . \end{aligned}$$
(4.19)

By the property \(\partial_{t} K(x,t)=\partial_{x}^{2} K(x,t)\), the first integral in (4.19) can be written as

$$\begin{aligned} &\int_{0}^{t_1-\epsilon} \int_{-\infty}^{\infty} \int_{t_1}^{t_2} \partial_s^{m+3} K(s-\xi, t-\tau) \cdot(h\circ\varphi) (\xi,\tau) dt d\xi d\tau . \end{aligned}$$
(4.20)

For fixed \(s\in\mathbb{R}\), τ∈[0,t 1ϵ], one can conclude from (4.6) and (3.20) that the function \(L_{(s,\tau)}^{m+3}(\xi,t):=\partial_{s}^{m+3} K(s-\xi,t-\tau) \cdot (h\circ\varphi)(\xi,\tau)\) is uniformly bounded, integrable over the subset \(\mathbb{R}\times [t_{1},t_{2}]\subset\mathbb{R}^{2}\) and

$$\begin{aligned} \iint_{\mathbb{R}\times[t_1,t_2]} \bigl\vert L_{(s,\tau)}^{m+3}(\xi,t) \bigr\vert d(\xi,t) < +\infty . \end{aligned}$$
(4.21)

By using Fubini’s Theorem, we may rewrite the integral in (4.20) as

$$\begin{aligned} &\int_{0}^{t_1-\epsilon} \int_{t_1}^{t_2} \int_{-\infty}^{\infty} \partial_s^{m+3} K(s-\xi, t-\tau) \cdot(h\circ\varphi) (\xi,\tau) d\xi dt d\tau =:I_1 . \end{aligned}$$
(4.22)

By applying (4.7), (4.17), (4.18), we note that tτϵ/2 in the integrand of (4.22) and thus

$$\begin{aligned} |I_1|\le|t_2-t_1| \cdot(t_1- \epsilon) \cdot2C_3 \cdot\sup_{t\in[\epsilon/2, b]}\bigl\{ C_{K}(m+3, t)\bigr\} . \end{aligned}$$
(4.23)

Denote the second integral in (4.19) by I 2. Then, by applying (4.4), (4.8), (4.18), we obtain

$$\begin{aligned} |I_2|\le\bigl(|t_2-t_1|+\epsilon\bigr) \cdot \frac{2}{\sqrt{\pi t_1}} \cdot C(m, b, t_1-\epsilon) . \end{aligned}$$
(4.24)

Similarly, we may denote the third integral in (4.19) by I 3 and obtain

$$\begin{aligned} |I_3|\le\epsilon \cdot\frac{2}{\sqrt{\pi t_1}} \cdot C(m, b, t_1-\epsilon) . \end{aligned}$$
(4.25)

Notice that sup t∈[ϵ/2,b]{C K (m+3,t)}→+∞, as ϵ→+0, while C(m,b,t 1ϵ) in (4.24) and (4.25) would remain bounded as ϵ→+0. Now, for any sufficiently small ϵ>0, we choose any t 2∈(t 1ϵ/2,t 1+ϵ/2) such that

$$|t_2-t_1|^{1/2} \cdot\sup_{t\in(\epsilon/2, b)}\bigl\{ C_{K}(m+3, t)\bigr\} \le1 . $$

Then, from (4.23)–(4.25), we obtain

$$\begin{aligned} &\bigl|\gamma_{m+1}(s,t_2) - \gamma_{m+1}(s,t_1)\bigr| \\ &\quad< \biggl\{ |\Delta t| ^{\frac{1}{2}}\cdot t_1 \cdot2C_3 + \bigl(|\Delta t|+2\epsilon\bigr) \cdot\frac{2}{\sqrt{\pi t_1}} \cdot C(m, b, t_1-\epsilon) \biggr\} , \end{aligned}$$

where |Δt|:=|t 2t 1|<ϵ/2. Now, we have the continuity of γ m+1 along t-direction at any point in \(D_{0}^{b}\). Thus, the proof of (4.3) is obtained. □

Proof of Lemma 10

We want to show that

$$\begin{aligned} \partial_s^{\ell}H_{0}^{\varphi}(\cdot,t) = \gamma_{\ell}(\cdot,t) ,\quad \forall t\in(0,b] ,\ \ell\in \{1,2,\ldots,m+1\} . \end{aligned}$$
(4.26)

Let

$$\begin{aligned} J_\epsilon(s,t) :=\int_0^{t-\epsilon}\int _{-\infty}^{\infty} K(s-\xi,t-\tau) \cdot(h\circ\varphi) ( \xi,\tau) d\xi d\tau . \end{aligned}$$

Note that, for fixed t∈(0,b] and fixed ϵ∈(0,t), J ϵ (⋅,t) is smooth over \(\mathbb{R}\), and we may exchange the operation of differentiation and integration below,

$$\begin{aligned} \partial_s^{\ell}J_\epsilon(s,t) &=\int _0^{t-\epsilon}\int_{-\infty}^{\infty} \partial_s^{\ell}K(s-\xi,t-\tau) \cdot(h\circ\varphi) (\xi, \tau) d\xi d\tau . \end{aligned}$$

Then, for any fixed t∈(0,b] and ∈{1,2,…,m+1}, we first show that, on any bounded and closed interval of \(\mathbb{R}\),

$$\partial_s^{\ell}J_\epsilon(\cdot, t)\rightarrow \gamma_{\ell}(\cdot, t) \text{ uniformly as } \epsilon\rightarrow+0 . $$

Observe that, from (4.10), choosing sufficiently small ϵ>0 so that tϵ>δ>0, and applying (4.8), we have

$$\begin{aligned} &\bigl\vert \gamma_{\ell}(s, t) - \partial_s^{\ell}J_\epsilon(s, t) \bigr\vert \\ &\quad= \biggl\vert \int_{t-\epsilon}^{t}\int _{-\infty}^{\infty} \partial_s K(s-\xi,t-\tau) \cdot \partial_\xi^{\ell-1}(h\circ\varphi) (\xi,\tau) d\xi d\tau\biggr\vert \\ &\quad \leq C(\ell-1, b, \delta)\cdot\frac{2(\sqrt{t}-\sqrt{t-\epsilon })}{\sqrt{\pi}} . \end{aligned}$$

Thus, over any compact subset \([s_{0}, s]\subset\mathbb{R}\) and for any fixed t∈(0,b],

$$\begin{aligned} \partial_s^{\ell}J_\epsilon(\cdot, t)\rightarrow \gamma_{\ell}(\cdot, t) \text{ uniformly,}\quad \forall \ell\in \{1,2,\ldots,m+1\} , \end{aligned}$$
(4.27)

as ϵ→+0. Moreover, γ (⋅,t) is uniformly continuous on [s 0,s], for all ∈{1,2,…,m+1}.

Now, we prove (3.37) by induction argument. Namely, we assume that

$$\begin{aligned} \partial_s^{\ell}H_{0}^{\varphi}(\cdot,t) = \gamma_{\ell}(\cdot,t) ,\quad \forall \ell\in\{0,1,\ldots,m\},\ \forall t\in(0,b] . \end{aligned}$$
(4.28)

Notice that, as =0, the equality holds by the definition of function γ . Since

$$\begin{aligned} \partial_s^{\ell} J_\epsilon(s, t) &=\int _{s_0}^{s} \partial_s^{\ell+1} J_\epsilon(x, t) dx + \partial_s^{\ell} J_\epsilon(s_0, t) , \end{aligned}$$
(4.29)

∈{1,…,m}, fixed t∈(0,b], and sufficiently small ϵ>0. By letting ϵ→+0 and applying (4.27) in (4.29), we derive

$$\begin{aligned} \gamma_{\ell}(s, t) =\int_{s_0}^{s} \gamma_{\ell+1}(x, t) dx + \gamma_{\ell}(s_0, t) , \quad \forall \ell\in\{1,\ldots,m\} . \end{aligned}$$
(4.30)

By applying (4.28) to the L.H.S. of (4.30), we obtain

$$\begin{aligned} \partial_s^{\ell}H_{0}^{\varphi}(s, t) = \int_{s_0}^{s} \gamma_{\ell+1}(x, t) dx + \gamma_{\ell}(s_0, t) , \quad\forall \ell\in\{1, \ldots,m\} . \end{aligned}$$

Then, by applying the fundamental theorem of calculus above, we have proved (4.26).

The proof of Lemma 10 is now completed by using an induction argument on m, and applying Lemma 13 and (4.26). Note that when m=1, (3.34), (3.32), (3.33) hold from the fact that \(\varphi\in\mathfrak{B}_{t_{0}}\), for some t 0∈(0,b 0], and applying Lemma 6. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CC., Lue, YK. & Schwetlick, H.R. The Second-Order L 2-Flow of Inextensible Elastic Curves with Hinged Ends in the Plane. J Elast 119, 263–291 (2015). https://doi.org/10.1007/s10659-015-9518-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-015-9518-5

Keywords

Mathematics Subject Classification (2010)

Navigation