Skip to main content
Log in

Optimum Young’s Modulus of a Homogeneous Cylinder Energetically Equivalent to a Functionally Graded Cylinder

  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

For a functionally graded (FG) circular cylinder loaded by uniform pressures on the inner and the outer surfaces and Young’s modulus varying in the radial direction, we find lower and upper bounds for Young’s modulus of the energetically equivalent homogeneous cylinder. That is, the strain energies of the FG and the homogeneous cylinders are equal to each other. For a typical power law variation of Young’s modulus in the FG cylinder, it is shown that taking only two series terms, yields good values for bounds of the equivalent modulus. We also study two inverse problems. First, an investigation is made to find the radial variation of Young’s modulus in the FG cylinder, having a constant Poisson’s ratio, that gives the maximum value of the equivalent modulus. Second, the complementary problem of finding the radial variation of Poisson’s ratio in the FG cylinder, having a constant stiffness, that gives the maximum value of the equivalent modulus, is considered. It is found that the spatial variation of the elastic properties, that maximizes the equivalent modulus, depends strongly upon the external loading on the cylinder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Timoshenko, S., Goodier, J.N.: Theory of Elasticity, 3rd edn. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  2. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  3. Wang, C.: Applied Elasticity. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  4. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity, 4th edn. Noordhoff, Groningen (1963)

    MATH  Google Scholar 

  5. Jabbari, M., Sohrabpour, S., Eslami, M.R.: Mechanical and thermal stresses in a functionally graded hollow cylinder due to radially symmetric loads. Int. J. Press. Vessels Piping 79, 493–497 (2002)

    Article  Google Scholar 

  6. Fettahlioglu, O.A., Steele, T.K.: Thermal deformations and stresses in circularly curved thin beams and rings. J. Therm. Stresses 11(3), 233–255 (1988)

    Article  Google Scholar 

  7. Mohammadi, M., Dryden, J.R.: Thermal stresses in a nonhomogeneous curved beam. J. Therm. Stresses 31, 587–598 (2008)

    Article  Google Scholar 

  8. Jabbari, M., Sohrabpour, S., Eslami, M.R.: General solutions for mechanical and thermal stresses in a functionally graded hollow cylinder due to nonaxisymmetric steady-state loads. J. Appl. Mech., Trans. ASME 70, 111–118 (2003)

    Article  ADS  MATH  Google Scholar 

  9. Tarn, J.Q.: Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads. Int. J. Solids Struct. 38, 8189–8206 (2001)

    Article  MATH  Google Scholar 

  10. Zimmerman, R.W., Lutz, M.P.: Thermal stresses and thermal expansion in a uniformly heated functionally graded cylinder. J. Therm. Stresses 22, 177–188 (1999)

    Article  Google Scholar 

  11. Lutz, M.P., Zimmerman, R.W.: Thermal stresses and effective thermal expansion coefficient of a functionally gradient sphere. J. Therm. Stresses 19, 39–54 (1996)

    Article  MathSciNet  Google Scholar 

  12. Shao, Z.S., Wang, T.J.: Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length and subjected to thermal/mechanical loads. Int. J. Solids Struct. 43, 3856–3874 (2006)

    Article  MATH  Google Scholar 

  13. Tutuncu, N.: Stresses in thick-walled FGM cylinders with exponentially-varying properties. Eng. Struct. 29, 2032–2035 (2007)

    Article  Google Scholar 

  14. Mohammadi, M., Dryden, J.R.: Influence of the spatial variation of Poisson’s ratio upon the elastic field in nonhomogeneous axisymmetric bodies. Int. J. Solids Struct. 46, 788–795 (2009)

    Article  MATH  Google Scholar 

  15. Nie, G.J., Batra, R.C.: Exact solutions and material tailoring for functionally graded hollow circular cylinders. J. Elast. 99(2), 179–201 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nie, G.J., Batra, R.C.: Material tailoring and analysis of functionally graded isotropic and incompressible linear elastic hollow cylinders. Compos. Struct. 92, 265–274 (2010)

    Article  Google Scholar 

  17. Dryden, J., Jayaraman, K.: Effect of inhomogeneity on the stress in pipes. J. Elast. 83, 179–189 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Theotokoglou, E.E., Stampouloglou, I.H.: The radially nonhomogeneous elastic axisymmetric problem. Int. J. Solids Struct. 45, 6535–6552 (2008)

    Article  MATH  Google Scholar 

  19. Rooney, F.J., Ferrari, M.: Torsion and flexure of inhomogeneous elements. Compos. Eng. 5(7), 901–911 (2003)

    Article  Google Scholar 

  20. Genin, G.M., Birman, V.: Micromechanics and structural response of functionally graded, particulatematrix, fiber-reinforced composites. Int. J. Solids Struct. 46, 2136–2150 (2009)

    Article  MATH  Google Scholar 

  21. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir, Moscow (1981)

    MATH  Google Scholar 

  22. Pan, E., Roy, A.K.: A simple plane-strain solution for functionally graded multilayered isotropic cylinders. Struct. Eng. Mech. 24(6), 727–740 (2006)

    Google Scholar 

  23. Horgan, C.O., Chan, A.M.: The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials. J. Elast. 55, 43–59 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Oral, A., Anlas, G.: Effects of radially varying moduli on stress distribution of nonhomogeneous anisotropic cylindrical bodies. Int. J. Solids Struct. 38(20), 5568–5588 (2005)

    Article  Google Scholar 

  25. Chen, Y.Z., Lin, X.Y.: Elastic analysis for thick cylinders and spherical pressure vessels made of functionally graded materials. Comput. Mater. Sci. 44, 581–587 (2008)

    Article  Google Scholar 

  26. Li, X.F., Peng, X.L.: A pressurized functionally graded hollow cylinder with arbitrarily varying material properties. J. Elast. 96, 81–95 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Batra, R.C.: Optimal design of functionally graded incompressible linear elastic cylinders and spheres. AIAA J. 46(8), 2050–2057 (2010)

    Article  ADS  Google Scholar 

  28. Gal, D., Dvorkin, J.: Stresses in anisotropic cylinders. Mech. Res. Commun. 22, 109–113 (1995)

    Article  Google Scholar 

  29. Lutz, M.P., Zimmerman, R.W.: Effect of the interphase zone on the bulk modulus of a particulate composite. J. Appl. Mech., Trans. ASME 63, 855–861 (1996)

    Article  ADS  MATH  Google Scholar 

  30. Markworth, A.J., Ramesh, K.S., Parks, W.P.: Modelling studies applied to functionally graded materials. J. Mater. Sci. 30, 2183–2193 (1995)

    Article  ADS  Google Scholar 

  31. Birman, V., Byrd, L.W.: Modeling and analysis of functionally graded materials and structure. Appl. Mech. Rev. 60, 195–216 (2007)

    Article  ADS  Google Scholar 

  32. Subbaraman, G., Reifsnider, K.L.: Mechanical response of fuel clad with radial property variations. In: 12th Annual. Mtg. SES, University of Texas, vol. 36, pp. 1235–1247 (1976)

    Google Scholar 

  33. Francfort, G.A., Murat, F.: Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal. 94(4), 307–334 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Paul, B.: Prediction of elastic constants of multiphase materials. Trans. Metall. Soc. AIME 218, 36–41 (1960)

    Google Scholar 

  35. Mura, T.: Micromechanics of Defects in Solids, 2nd edn. Martinus Nijhoff, Boston (1987)

    Book  Google Scholar 

  36. Torquanto, S.: Random Heterogeneous Materials. Springer, New York (2002)

    Google Scholar 

  37. Cherkaev, A.: Variational Methods for Structural Optimization. Springer, New York (2000)

    MATH  Google Scholar 

  38. Avseth, P., Mukerji, T., Mavko, G.: Quantitative Seismic Interpretation: Applying Rock Physics Tools to Reduce Interpretation Risk. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  39. Arthurs, A.M.: Complementary Variational Principles. Clarendon, Oxford (1980)

    MATH  Google Scholar 

Download references

Acknowledgements

Funding for Dryden was provided by NSERC, and for Batra by ONR grant N00014-11-1-0594.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Dryden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dryden, J., Batra, R.C. Optimum Young’s Modulus of a Homogeneous Cylinder Energetically Equivalent to a Functionally Graded Cylinder. J Elast 110, 95–110 (2013). https://doi.org/10.1007/s10659-012-9383-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10659-012-9383-4

Keywords

Mathematics Subject Classification

Navigation