Skip to main content
Log in

Deposition patterns of Fusarium graminearum ascospores and conidia within a wheat canopy

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium graminearum is the most important species in the fungal complex causing Fusarium head blight of small grain cereals. The fungus produces two types of spores on crop residues (ascospores and conidia), which are dispersed to ears by air currents and rain splashes, respectively. The distribution patterns of ascospores and conidia within a wheat canopy between booting and grain maturity were assessed by using leaf-like spore traps placed at 10, 30, and 60 cm height, and ear-like spore traps at 90 cm height. Maize residues were the inoculum source for both ascospores and conidia within the wheat plot. Of the total spores counted, 93 % were ascospores and 7 % were conidia. Approximately 41, 22, 19, and 18 % of the ascospores, and 77, 10, 8, and 5 % of the conidia were sampled at 10, 30, 60, and 90 cm height, respectively. Ascospore numbers did not significantly differ between those sampled on the upper or the lower sides of the leaf-like traps or among the four orientations (north, south, east, or west) of the ear-like traps. According to the index of dispersion (D), the spatial distribution of trapped ascospores was largely random (i.e., D ≤ 1) rather than aggregated (i.e., D > 1). The collective results (averaged across all traps and sampling periods) showed that the random distribution of the ascospores within the wheat canopy and at the ear level was associated with a clear vertical distribution pattern indicating an upward movement of ascospores from the maize residues on the ground.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ali, S., & Francl, L. (2001). Progression of Fusarium species on wheat leaves from seedling to adult stages in North Dakota. In 2001 National Fusarium Head Blight Forum (p. 99). Erlanger, KY, USA.

  • Bergstrom, G. C., & Schmale, D. G. I. (2007). Aerobiology of Gibberella zeae: whence come the spores for Fusarium head blight? In 2007 National Fusarium Head Blight Forum (pp. 70–71). Kansas City, MO, USA.

  • De Luna, L., Bujold, I., Carisse, O., & Paulitz, T. C. (2002). Ascospore gradients of Gibberella zeae from overwintered inoculum in wheat fields. Canadian Journal of Plant Pathology, 24, 457–464.

    Article  Google Scholar 

  • Del Ponte, E. M., Shah, D. A., & Bergstrom, G. C. (2003). Spatial patterns of Fusarium head blight in New York wheat fields suggest role of airborne inoculum. Plant Health Progress. doi:10.1094/PHP-2003-0418-01-RS.

    Google Scholar 

  • Fernando, W. G., Paulitz, T. C., Seaman, W. L., Dutilleul, P., & Miller, J. D. (1997). Head blight gradients caused by Gibberella zeae from area sources of inoculum in wheat field plots. Phytopathology, 87(4), 414–421.

    Article  CAS  PubMed  Google Scholar 

  • Fernando, W. G. D., Miller, J. D., Seaman, W. L., Seifert, K., & Paulitz, T. C. (2000). Daily and seasonal dynamics of airborne spores of Fusarium graminearum and other Fusarium species sampled over wheat plots. Canadian Journal of Botany, 78(4), 497–505.

    Article  Google Scholar 

  • Fitt, B. D. L., McCartney, H. A., & Walklate, P. J. (1989). The role of rain in dispersal of pathogen inoculum. Annual Review of Phytopathology, 27, 241–270.

    Article  Google Scholar 

  • Francl, L., Shaner, G., Bergstrom, G. C., Gilbert, J., Pedersen, W., Dill-Macky, R., et al. (1999). Daily inoculum levels of Gibberella zeae on wheat spikes. Plant Disease, 83(7), 662–666.

    Article  Google Scholar 

  • Headrick, J. M., Glawe, D. A., & Pataky, J. K. (1988). Ascospore polymorphism in Gibberella zeae. Mycologia, 80(5), 679–684.

    Article  Google Scholar 

  • Hörberg, H. M. (2002). Patterns of splash dispersed conidia of Fusarium poae and Fusarium culmorum. European Journal of Plant Pathology, 108, 73–80.

    Article  Google Scholar 

  • Inch, S., Fernando, W. G. D., & Gilbert, J. (2005). Seasonal and daily variation in the airborne concentration of Gibberella zeae (Schw.) Petch spores in Manitoba. Canadian Journal of Plant Pathology, 27, 357–363.

    Article  Google Scholar 

  • Ingold, C. T. (1933). Spore discharge in the Ascosmycetes. New Phytologist, 32(3), 175–196.

    Article  Google Scholar 

  • Isard, S. A., & Gage, S. H. (2001). Flow of life in the atmosphere: an airscape approach to understanding invasive organisms (p. 240). East lansing: Michigan State University Press.

    Google Scholar 

  • Jenkinson, P., & Parry, D. W. (1994). Splash dispersal of conidia of Fusarium culmorum and Fusarium avenaceum. Mycological Research, 98(5), 506–510.

    Article  Google Scholar 

  • Keller, M. D., Waxman, K. D., Bergstrom, G. C., & Schmale, D. G. (2010). Local distance of wheat spike infection by released clones of Gibberella zeae disseminated from infested corn residue. Plant Disease, 94(9), 1151–1155.

    Article  Google Scholar 

  • Keller, M. D., Bergstrom, G. C., & Shields, E. J. (2014). The aerobiology of Fusarium graminearum. Aerobiologia, 30(2), 123–136.

    Article  Google Scholar 

  • Leslie, J. F., & Summerell, B. (2006). The Fusarium Laboratory manual (p. 387). Ames: Blackwell Publishing.

    Book  Google Scholar 

  • Madden, L. V. (1997). Effects of rain on splash dispersal of fungal pathogens. Canadian Journal of Plant Pathology, 19(2), 225–230.

    Article  Google Scholar 

  • Madden, L. V., & Hughes, G. (1995). Plant disease incidence: distributions, heterogeneity, and temporal analysis. Annual Review of Phytopathology, 33, 529–564.

    Article  CAS  PubMed  Google Scholar 

  • Madden, L. V., Hughes, G., & van der Bosch, F. (2007). The study of plant disease epidemics (421)). St. Paul: APS-Press.

    Google Scholar 

  • Maldonado-Ramirez, S. L., Schmale, D. G. I., Shields, E. J., & Bergstrom, G. C. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology, 132(1–2), 20–27.

    Article  Google Scholar 

  • Manstretta, V. (2015). Ascospore production, dispersal and survival in Fusarium graminearum. Doctoral thesis. Università Cattolica del Sacro Cuore.

  • Markell, S. G., & Francl, L. J. (2003). Fusarium head blight inoculum: species prevalence and Gibberella zeae spore type. Plant Disease, 87(7), 814–820.

    Article  Google Scholar 

  • Meier, U. (2001). Growth stages of mono-and dicotyledonous plants BBCH monograph. agriculture (p. 158).

  • Mitter, V., Francl, L. J., Ali, S., Simpfendorfer, S., & Chakraborty, S. (2006). Ascosporic and conidial inoculum of Gibberella zeae play different roles in Fusarium head blight and crown rot of wheat in Australia and the USA. Australasian Plant Pathology, 35(4), 441.

    Article  Google Scholar 

  • Oke, T. R. (1987). Boundary layer climates (2nd ed., p. 464). Cambridge: Cambridge University Press.

    Google Scholar 

  • Osborne, L., & Stein, J. (2004). Inoculum distribution and temporal dynamics within the spring wheat canopy. In 2nd International Symposium on Fusarium Head Blight incorporating the 8th European Fusarium Seminar, Orlando, FL, 11–15 December 2004 (pp. 480–482).

  • Osborne, L. E., & Stein, J. M. (2007). Epidemiology of Fusarium head blight on small-grain cereals. International Journal of Food Microbiology, 119(1–2), 103–108.

    Article  PubMed  Google Scholar 

  • Osborne, L., Jin, Y., Rosolen, F., & Hannoun, M. J. (2002). FHB inoculum distribution on wheat plants within the canopy. In 2002 National Fusarium Head Blight Forum (p. 175). Erlanger, KY, USA.

  • Panisson, E., Reis, E. M., & Boller, W. (2002). Quantificacao de propagulos de Gibberella zeae no ar infeccao de anteras em trigo. Fitopatologia Brasileira, 27(5), 489–494.

    Article  Google Scholar 

  • Parry, D. W., Jenkinson, P., & McLeod, L. (1995). Fusarium ear blight (scab) in small grain cereals - a review. Plant Pathology, 44, 207–238.

    Article  Google Scholar 

  • Paul, P. A., El-Allaf, S. M., Lipps, P. E., & Madden, L. V. (2004). Rain splash dispersal of Gibberella zeae within wheat canopies in Ohio. Phytopathology, 94(12), 1342–1349. doi:10.1094/PHYTO.2004.94.12.1342.

    Article  CAS  PubMed  Google Scholar 

  • Paulitz, T. C. (1996). Diurnal release of ascospores by Gibberella zeae in inoculated wheat plots. Plant Disease, 80(6), 674–678.

    Article  Google Scholar 

  • Paulitz, T. C. (1999). Fusarium head blight : a re-emerging disease. Phytoprotection, 80, 127–133.

    Article  Google Scholar 

  • Pereyra, S. A., & Dill-Macky, R. (2008). Colonization of the residues of diverse plant species by Gibberella zeae and their contribution to Fusarium head blight inoculum. Plant Disease, 92(5), 800–807.

    Article  Google Scholar 

  • Pielou, E. C. (1977). Mathematical ecology (p. 385). John Wiley and Sons, Ltd.

  • Prussin, A. J. I., Qing, L., Malla, R., Ross, S. D., & Schmale, D. G. I. (2014). Monitoring the long-distance transport of Fusarium graminearum from field-scale sources of inoculum. Plant Disease, 98(4), 504–511.

    Article  CAS  Google Scholar 

  • Rossi, V., Languasco, L., Pattori, E., & Giosuè, S. (2002). Dynamics of airborne Fusarium macroconidia in wheat fields naturally affected by Head Blight. Journal of Plant Pathology, 84(1), 53–64.

    Google Scholar 

  • Salgado, J. D., Madden, L. V., & Paul, P. A. (2008). Comparing effects of macroconidia and ascospores of Gibberella zeae on Fusarim head blight development in wheat. In 2008 National Fusarium Head Blight Forum (p. 790). Erlanger, KY.

  • Schmale, D. G., Arntsen, Q. A., & Bergstrom, G. C. (2005a). The forcible discharge distance of ascospores of Gibberella zeae. Canadian Journal of Plant Pathology, 27(3), 376–382.

    Article  Google Scholar 

  • Schmale, D. G., Shah, D. A., & Bergstrom, G. C. (2005b). Spatial patterns of viable spore deposition of Gibberella zeae in wheat fields. Phytopathology, 95(5), 472–479.

    Article  PubMed  Google Scholar 

  • Schmale, D. G., Shields, E. J., & Bergstrom, G. C. (2006). Night-time spore deposition of the Fusarium head blight pathogen, Gibberella zeae, in rotational wheat fields. Canadian Journal of Plant Pathology, 28, 100–108.

    Article  Google Scholar 

  • Schmale, D. G., Ross, S. D., Fetters, T. L., Tallapragada, P., Wood-Jones, A. K., & Dingus, B. (2012). Isolates of Fusarium graminearum collected 40–320 meters above ground level cause Fusarium head blight in wheat and produce trichothecene mycotoxins. Aerobiologia, 28(1), 1–11.

    Article  Google Scholar 

  • Shah, D. A., & Bergstrom, G. C. (2001). Spatial pattern of Fusarium head blight in New York what fields in 2000 and 2001. In 2001 National Fusarium Head Blight Forum (pp. 154–155). Erlanger, KY.

  • Shah, D. A., Stockwell, C. A., Kawamoto, S. O., & Bergstrom, G. C. (2000). Spatial pattern of Fusarium head blight in New York wheat field during the epidemic of 2000. In 2000 National Fusarium head Blight Forum (pp. 174–175). Erlanger, KY, USA.

  • Stack, R. W. (1989). A comparison of the inoculum potential of ascospores and conidia of Gibberella zeae. Canadian Journal of Plant Pathology, 11(2), 137–142.

    Article  Google Scholar 

  • Sutton, J. C. (1982). Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearum. Canadian Journal of Plant Pathology, 4, 195–209.

    Article  Google Scholar 

  • Trail, F. (2007). Fungal cannons: explosive spore discharge in the Ascomycota. FEMS Microbiology Letters, 276(1), 12–18.

    Article  CAS  PubMed  Google Scholar 

  • Van Maanen, A., & Xu, X. M. (2003). Modelling plant disease epidemics. European Journal of Plant Pathology, 109, 669–682.

    Article  Google Scholar 

  • Waggoner, P. E., & Rich, S. (1981). Lesion distribution, multiple infection, and the logistic increase of plant disease. Proceedings of the National Academy of Sciences of the United States of America, 78(6), 3292–3295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Walklate, P. J., McCartney, H. A., & Fitt, B. D. L. (1989). Vertical dispersal of plant pathogens by splashing. Part II: experimental study of the relationship between raindrop size and the maximum splash height. Plant Pathology, 38(1), 64–70.

    Article  Google Scholar 

  • Xu, X.-M. (2003). Effects of environmental conditions on the development of Fusarium ear blight. European Journal of Plant Pathology, 109(7), 683–689.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Doctoral School on the Agro-Food System (Agrisystem) of the Università Cattolica del Sacro Cuore (Italy).

Compliance with ethical standards

Conflict of Interest

The authors declare that they have no conflict of interest.

The research do not involve Human Participants nor Animals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Rossi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manstretta, V., Gourdain, E. & Rossi, V. Deposition patterns of Fusarium graminearum ascospores and conidia within a wheat canopy. Eur J Plant Pathol 143, 873–880 (2015). https://doi.org/10.1007/s10658-015-0722-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-015-0722-8

Keywords

Navigation