Skip to main content
Log in

Effect of calcium nutrition on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

This study investigated the effect of calcium nutrition on tomato bacterial wilt caused by Ralstonia solanacearum and the regulation of resistance mechanisms. Plants cultured in nutrient solution with calcium concentrations of 0.5, 5.0, and 25.0 mM, were inoculated with R. solanacearum by the root dip method. Severity of disease development, Ca concentration in tomato root and shoot tissues, hydrogen peroxide (H2O2) concentration, peroxidase (POD, EC 1.11.1.7) and polyphenol oxidase (PPO, EC 1.10.3.2) in tomato leaves were analyzed. Disease severities of low, medium and high Ca treatments were 100 %, 77.1 % and 56.8 % respectively. Plant growth in high Ca treatment was significantly better than those in low Ca treatment in height, stem diameter and biomass. Tomato plants absorbed significantly more Ca in roots and shoots as the level of Ca in the nutrient solution increased. In addition, H2O2 level in high Ca treatment rose faster and reached a higher peak with 10.86 μM gFW−1(31.32 % greater than medium Ca plants). The activities of POD and PPO also have a greater increase in high Ca treatment with 99.09 U gFW−1 and 107.24 U gFW−1 compared to 40.70 U gFW−1 and 77.45 U gFW−1 in low Ca treatment. A negative correlation was found between Ca concentration, level of H2O2, POD, PPO in tomato, and disease severity, indicating that they played an important role in resistance of tomato to this disease. These results suggested that Ca was involved in the regulation of H2O2 concentration, and activity of POD and PPO in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Agrios, N. G. (2005). Plant Pathology (5th ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Balogun, O. S., & Teraoka, T. (2004). Time-course analysis of the accumulation of phenols in tomato seedlings infected with potato virus X and tobacco mosaic virus. Biokemistri, 16, 112–120.

    Google Scholar 

  • Bateman, D. F., & Lumsden, R. D. (1965). Relation of calcium content and nature of pectic substances in bean hypocotyls of different ages to susceptibility to an isolate of Rhizoctonia solani. Phytopathology, 55, 734–738.

    CAS  Google Scholar 

  • Berry, S. Z., Madumadu, G. G., & Uddin, M. R. (1988). Effect of calcium and nitrogen nutrition on the bacterial canker disease of tomato. Plant and Soil, 112, 113–120.

    Article  CAS  Google Scholar 

  • Bhonwong, A., Stout, M. J., Attajarusit, J., & Tantasawat, P. (2009). Defensive role of tomato polyphenol oxidases against cotton bollworm (Helicoverpa armigera) and beet armyworm (Spodoptera exigua). Journal of Chemical Ecology, 35, 28–38.

    Article  PubMed  CAS  Google Scholar 

  • Bolwell, G. P. (1999). Role of active oxygen species and NO in plant defence responses. Current Opinion in Plant Biology, 2, 287–294.

    Article  PubMed  CAS  Google Scholar 

  • Bush, D. S. (1995). Calcium regulation in plant cells and its role in signaling. Annual Review of Plant Physiology and Plant Molecular Biology, 46, 95–122.

    Article  CAS  Google Scholar 

  • Chandra, S., & Low, P. S. (1997). Measurement of Ca2+ fluxes during elicitation of the oxidative burst in aequorin-transformed tobacco cells. Journal of Biological Chemistry, 272, 28274–28280.

    Article  PubMed  CAS  Google Scholar 

  • Conway, W. S., Sams, C. E., Mcguire, R. G., & Kelman, A. (1992). Calcium treatment of apples and potatoes to reduce postharvest decay. Plant Disease, 76, 329–334.

    Article  CAS  Google Scholar 

  • Elsas, J. D. V., Kastelein, P., de Vries, P. M., & van Overbeek, L. S. (2001). Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Canadian Journal of Microbiology, 47, 842–854.

    PubMed  Google Scholar 

  • Eraslan, F., Akbas, B., Inal, A., & Tarakcioglu, C. (2007). Effects of foliar sprayed calcium sources on Tomato mosaic virus (ToMV) infection in tomato plants grown in greenhouses. Phytoparasitica, 35, 150–158.

    Article  CAS  Google Scholar 

  • Foyer, C. H., LopezDelgado, H., Dat, J. F., & Scott, I. M. (1997). Hydrogen peroxide- and glutathione-associated mechanisms of acclimatory stress tolerance and signalling. Physiologia Plantarum, 100, 241–254.

    Article  CAS  Google Scholar 

  • Gelli, A., Higgins, V. J., & Blumwald, E. (1997). Activation of plant plasma membrane Ca2+-permeable channels by race-specific fungal elicitors. Plant Physiology, 113, 269–279.

    PubMed  CAS  Google Scholar 

  • Goodman, R. N., & Novacky, A. J. (1994). The hypersensitive reaction in plants to pathogens: a resistance phenomenon. St. Paul, MN, USA: American Phytopathological Society Press.

    Google Scholar 

  • Hayward, A. C. (1991). Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annual Review of Phytopathology, 29, 65–87.

    Article  PubMed  CAS  Google Scholar 

  • Huang, J., Wu, J., Li, C., Xiao, C., & Wang, G. (2009). Specific and sensitive detection of Ralstonia solanacearum in soil with quantitative, real-time PCR assays. Journal of Applied Microbiology, 107, 1729–1739.

    Article  PubMed  CAS  Google Scholar 

  • Huber, D. M., & Graham, R. D. (1999). The role of nutrition in crop resistance and tolerance to disease. In Z. Rengel (Ed.), Mineral Nutrition of Crops—Fundamental Mechanisms and Implications (pp. 169–204). New York: Food Product Press.

    Google Scholar 

  • Ishihara, A., Miyagawaa, H., Kuwaharaa, Y., Uenob, T., & Mayamac, S. (1996). Involvement of Ca2+ ion in phytoalexin induction in oats. Plant Science, 115, 9–16.

    Article  CAS  Google Scholar 

  • Kar, R. K., & Choudhuri, M. A. (1987). Possible mechanisms of light-induced chlorophyll degradation in senescing leaves of Hydrilla-verticillata. Physiologia Plantarum, 70, 729–734.

    Article  CAS  Google Scholar 

  • Lamb, C., & Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 251–275.

    Article  PubMed  CAS  Google Scholar 

  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79, 583–593.

    Article  PubMed  CAS  Google Scholar 

  • Li, L., & Steffens, J. C. (2002). Overexpression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta, 215, 239–247.

    Article  PubMed  CAS  Google Scholar 

  • Li, M., Wang, G. X., & Lin, J. S. (2003). Application of external calcium in improving the PEG-induced water stress tolerance in liquorice cells. Botanical Bulletin of Academia Sinica, 44, 275–284.

    CAS  Google Scholar 

  • Li, J. G., Liu, H. X., Cao, J., Chen, L. F., Gu, C., Allen, C., et al. (2010). PopW of Ralstonia solanacearum, a new two-domain harpin targeting the plant cell wall. Molecular Plant Pathology, 11, 371–381.

    Article  PubMed  CAS  Google Scholar 

  • Linus-Muriithi, M. M., & Irungu, J. W. (2004). Effect of integrated use of inorganic fertilizer and organic manures on bacterial wilt incidence (BWI) and tuber yield in potato production systems on hill slopes of central Kenya. Journal of Mountain Science, 1, 81–88.

    Article  Google Scholar 

  • McGarvey, J. A., Denny, T. P., & Schell, M. A. (1999). Spatial-temporal and quantitative analysis of growth and EPS I production by Ralstonia solanacearum in resistant and susceptible tomato cultivars. Phytopathology, 89, 1233–1239.

    Article  PubMed  CAS  Google Scholar 

  • Mittler, R., Vanderauwera, S., Gollery, S., & Breusegem, V. (2004). Reactive oxygen gene network of plants. Trends in Plant Science, 9, 490–498.

    Article  PubMed  CAS  Google Scholar 

  • Mohaghegh, P., Khoshgoftarmanesh, A. H., Shirvani, M., Sharifnabi, B., & Nili, N. (2011). Effect of silicon nutrition on oxidative stress induced by Phytophthora melonis infection in cucumber. Plant Disease, 95, 455–460.

    Article  CAS  Google Scholar 

  • Murage, E. N., & Masuda, M. (1997). Response of pepper and eggplant to continuous light in relation to leaf chlorosis and activities of antioxidative enzymes. Scientia Horticulturae, 70, 269–279.

    Article  CAS  Google Scholar 

  • Pourcel, L., Routaboul, J. M., Cheynier, V., Lepiniec, L., & Debeaujon, I. (2007). Flavonoid oxidation in plants: from biochemical properties to physiological functions. Trends in Plant Science, 12, 29–36.

    Article  PubMed  CAS  Google Scholar 

  • Poysa, V. (1993). Evaluation of tomato breeding lines resistant to bacterial canker. Canadian Journal of Plant Pathology, 15, 301–304.

    Article  Google Scholar 

  • Rivard, C. L., O’Connell, S., Peet, M. M., & Louws, F. J. (2010). Grafting tomato with interspecific rootstock to manage diseases caused by Sclerotium rolfsii and southern root-knot nematode. Plant Disease, 94, 1015–1021.

    Article  Google Scholar 

  • Roberts, D. P., Denny, T. P., & Schell, M. A. (1988). Cloning of the egl gene of Pseudomonas-solanacearum and analysis of its role in phytopathogenicity. Journal of Bacteriology, 170, 1445–1451.

    PubMed  CAS  Google Scholar 

  • Rose, S., Parker, M., & Punja, Z. K. (2003). Efficacy of biological and chemical treatments for control of Fusarium root and stem rot on greenhouse cucumber. Plant Disease, 87, 1462–1470.

    Article  Google Scholar 

  • Ruiz, J. M., Rivero, R. M., López-Cantarero, I., & Romero, L. (2003). Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). Plant Growth Regulation, 41, 173–177.

    Article  CAS  Google Scholar 

  • Schober, B. M., & Vermeulen, T. (1999). Enzymatic maceration of witloof chicory by the soft rot bacteria Erwinia carotovora subsp carotovora: the effect of nitrogen and calcium treatments of the plant on pectic enzyme production and disease development. European Journal of Plant Pathology, 105, 341–349.

    Article  CAS  Google Scholar 

  • Silva, M. C., Guerra-Guimaraes, L., Loureiro, A., & Nicole, M. R. (2008). Involvement of peroxidases in the coffee resistance to orange rust (Hemileia vastatrix). Physiological and Molecular Plant Pathology, 72, 29–38.

    Article  CAS  Google Scholar 

  • Soares, A. G., Trugo, L. C., Botrel, N., & Souza, L. F. D. (2005). Reduction of internal browning of pineapple fruit (Ananas comusus L.) by preharvest soil application of potassium. Postharvest Biology and Technology, 35, 201–207.

    Article  CAS  Google Scholar 

  • Sugawara, S., Inamoto, Y., & Ushijima, M. (1981). Resolution and some properties of acid phosphatase isozymes bound to the cell wall of potato tubers. Agricultural and Biological Chemistry, 45, 1767–1773.

    Article  CAS  Google Scholar 

  • Sugimoto, T., Watanabe, K., Yoshida, S., Aino, M., Irie, K., Matoh, T., et al. (2008). Select calcium compounds reduce the severity of Phytophthora stem rot of soybean. Plant Disease, 92, 1559–1565.

    Article  CAS  Google Scholar 

  • Thipyapong, P., Hunt, M. D., & Steffens, J. C. (2004). Antisense downregulation of polyphenol oxidase results in enhanced disease susceptibility. Planta, 220, 105–117.

    Article  PubMed  CAS  Google Scholar 

  • Tyagi, M., Kayastha, A. M., & Sinha, B. (2000). The role of peroxidase and polyphenol oxidase isozymes in wheat resistance to Alternaria triticina. Biologia Plantarum, 43, 559–562.

    Article  CAS  Google Scholar 

  • Volpin, H., & Elad, Y. (1991). Influence of calcium nutrition on susceptibility of rose flowers to Botrytis blight. Phytopathology, 81, 1390–1394.

    Article  CAS  Google Scholar 

  • Wallace, A., Frolich, E., & Lunt, O. R. (1966). Calcium requirements of higher plants. Nature, 209, 634.

    Article  CAS  Google Scholar 

  • Wojtaszek, P. (1997). Oxidative burst: an early plant response to pathogen infection. Biochemical Journal, 322, 681–692.

    PubMed  CAS  Google Scholar 

  • Yamazaki, H. (2001). Relation between resistance to bacterial wilt and calcium nutrition in tomato seedlings. Japan Agricultural Research Quarterly, 35, 163–169.

    CAS  Google Scholar 

  • Yamazaki, H., & Hoshina, T. (1995). Calcium nutrition affects resistance of tomato seedlings to bacterial wilt. HortScience, 31, 91–93.

    Google Scholar 

  • Yamazaki, H., Ishizuka, O., & Hoshina, T. (1996). Relationship between resistance to bacterial wilt and nutrient uptake in tomato seedlings. Soil Science and Plant Nutrition, 42, 203–208.

    Article  CAS  Google Scholar 

  • Yamazaki, H., Kikuchi, S., Hoshina, T., & Kimura, T. (2000). Effect of calcium concentration in nutrient solution on development of bacterial wilt and population of its pathogen Ralstonia solanacearum in grafted tomato seedlings. Soil Science and Plant Nutrition, 46, 535–539.

    CAS  Google Scholar 

  • Yang, T., & Poovaiah, B. W. (2002). Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proceedings of the National Academy of Sciences of the United States of America, 99, 4097–4102.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the innovation key program of the Chinese academy of sciences (KZCX2-YW-JC405), agricultural science and technology achievements transformation fund programs (2009GB24910540), and the special fund for agro-scientific research in the public interest (20090 3011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Hua Dong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, JF., Li, JG. & Dong, YH. Effect of calcium nutrition on resistance of tomato against bacterial wilt induced by Ralstonia solanacearum . Eur J Plant Pathol 136, 547–555 (2013). https://doi.org/10.1007/s10658-013-0186-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-013-0186-7

Keyword

Navigation