Skip to main content

Advertisement

Log in

Seasonal variations and sources study by way of back trajectories and ANOVA for ambient air pollutants (particulates and metallic elements) within a mixed area at Longjing, central Taiwan: 1-year observation

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

This study measured the concentrations of particulates and metallic elements in ambient air by using PS-1 sampler (TSP) at Longjing area. And this study focuses on the collection of ambient air particulates, metallic elements, particulate-bound mercury Hg(p), concentrations. In addition, the sources of ambient pollutants by way of back trajectory analysis are found. Moreover, test mean concentration variance differences for metallic elements (PM, Hg(p), Mn, Fe, Zn, Cr, Cu, and Pb) among the four seasons (spring, summer, autumn and winter) through ANOVA are calculated. The result indicates that the average highest particulate concentration occurred in winter season, and the order was winter > spring > autumn > summer, and the mostly highest average metallic element (Mn, Fe, Zn, Cr, Cu, Pb) concentrations occurred in autumn. Moreover, the mostly average lowest metallic element concentrations occurred in summer. In addition, the above results of backward trajectories that the major particulate pollutants parcel mainly come from northeastern Taiwan. Moreover, when comparing the results of the first half year to that of the second half year, the they indicated that all metallic elements displayed significant differences in concentrations except those of Hg(p), Mn, Fe, Zn. Finally, metallic element Hg(p) is the only one which showed no significant concentration difference from either seasonal variations or half-year observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmed, M. K., Baki, M. A., Islam, M. S., Kundu, G. K., Sarkar, S. K., & Hossain, M. M. (2015). Human health risk assessment of heavy metals in tropical fish and shell fish collected from the river Buriganga, Bangladesh. Environmental Science and Pollution Research, 22, 15880–15890.

    Article  CAS  Google Scholar 

  • Bundschuh, J., Nath, B., Bhattacharya, P., Liu, C. W., Armienta, M. A., López, M. V. M., et al. (2012). Arsenic in the human food chain: The Latin American perspective. Science of the Total Environment, 429, 92–106.

    Article  CAS  Google Scholar 

  • Buonanno, G., & Morawska, L. (2015). Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens. Waste Management, 37, 75–81.

    Article  CAS  Google Scholar 

  • Buschmann, J., Berg, M., Stengel, C., Winkel, L., Sampson, M. L., Trang, P. T. K., & Viet, P. H. (2008). Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environment International, 34, 756–764.

    Article  CAS  Google Scholar 

  • Chen, B., Stein, A. F., Maldonado, P. G., de la Campa, Sanchez, Ana, M., Gonzalez-Castanedo, Y., et al. (2013). Size distribution and concentrations of heavy metals in atmospheric aerosols originating from industrial emissions as predicted by the HYSPLIT model. Atmospheric Environment, 71, 234–244.

    Article  CAS  Google Scholar 

  • Choi, E. M., Kim, S. H., Holsen, T. M., & Yi, S. M. (2009). Total gaseous concentrations in mercury in Seoul, Korea: Local sources compared to long-range transport from China and Japan. Environmental Pollution, 157(3), 816–822.

    Article  CAS  Google Scholar 

  • Draxler, R. R. (1999). HYSPLIT4 user's guide. NOAA Tech. Memo. ERL ARL-230, NOAA Air Resources Laboratory, Silver Spring, MD.

  • Eleftheriadis, K., Ochsenkuhn, K. M., Lymperopoulou, T., Karanasiou, A., Razos, P., & Ochsenkuhn-Petropoulou, M. (2014). Influence of local and regional sources on the observed spatial and temporal variability of size resolved atmospheric aerosol mass concentrations and water-soluble species in the Athens metropolitan area. Atmospheric Environment, 97, 252–261.

    Article  CAS  Google Scholar 

  • Fang, G. C., Cheng, M. T., & Chang, C. N. (1997). Monitoring and modeling the mass, heavy metal and ion species dry deposition in central Taiwan. Journal of Environmental Science and Health Part A, 32(8), 2183–2199.

    Google Scholar 

  • Fang, G. C., Basu, N., Nam, D. H., & Yang, I. L. (2009). Characterization of ambient air particulates and particulate mercury at Sha-Lu, Central Taiwan. Environmental Forensics, 10(4), 277–285.

    Article  CAS  Google Scholar 

  • Fang, G. C., Huang, Y. L., Huang, J. H., & Liu, C. K. (2012). Dry deposition of Mn, Zn, Cr, Cu and Pb in particles of sizes of 3 μm, 5.6 μm and 10 μm in central Taiwan. Journal of Hazardous Materials, 203–204(15), 158–168.

    Article  Google Scholar 

  • Fang, G. C., Chiang, H. C., Chen, Y. C., Xiao, Y. F., & Zhuang, Y. J. (2014). Particulates and metallic elements monitoring at two sampling sites (harbor, airport) in Taiwan. Environmental Forensics, 15, 296–305.

    Article  CAS  Google Scholar 

  • Fang, G. C., Lo, C. T., Zhuang, Y. J., Kuo, Y. C., & Cho, M. H. (2015). Sources of ambient air particulates and Hg(p) pollutants at Freeway, Industrial, Thermal power plant F.I.T. characteristic sites. Journal of Environmental Earth Sciences, 75, 103. doi:10.1007/s12665-015-5057-4

    Article  Google Scholar 

  • Fujikoshi, Y. (1993). Two-way ANOVA models with unbalanced data. Discrete Mathematics, 116(1–3), 315–334.

    Article  Google Scholar 

  • He, L. Y., Hu, M., Zhang, Y. H., Huang, X. F., & Yao, T. T. (2008). Fine particle emissions from on-road vehicles in the Zhujiang Tunnel, China. Environmental Science & Technology, 42, 4461–4466.

    Article  CAS  Google Scholar 

  • Kim, K. H., Kabir, E., & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environment International, 74, 136–143.

    Article  CAS  Google Scholar 

  • Krishnamoorthy, K., Lu, F., & Mathew, T. (2007). A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models. Computational Statistics & Data Analysis, 51(12), 5731–5742.

    Article  Google Scholar 

  • Mesquita, Sofia R., Dachs, Jordi, van Drooge, Barend L., Castro-Jimenez, Javier, Navarro-Martin, Laia, Barata, Carlos, et al. (2016). Toxicity assessment of atmospheric particulate matter in the Mediterranean and Black Seas open waters. Science of the Total Environment, 545–546, 163–170.

    Article  Google Scholar 

  • Pan, Y., Wang, Y., Sun, Y., Tian, S., & Cheng, M. (2013). Size-resolved aerosol trace elements at a rural mountainous site in Northern China: Importance of regional transport. Science of the Total Environment, 461, 761–771.

    Article  Google Scholar 

  • Pancras, J. P., Landis, M. S., Norris, G. A., Vedantham, R., & Dvonch, J. T. (2013). Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data. Science of the Total Environment, 448, 2–13.

    Article  CAS  Google Scholar 

  • Roychowdhury, T., Tokunaga, H., & Ando, M. (2003). Survey of arsenic and other heavy metals in food composites and drinking water and estimation of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Science of the Total Environment, 108(1–3), 15–35.

    Article  Google Scholar 

  • Şahin, Ü. A., Scherbakova, K., & Onat, B. (2012). Size distribution and seasonal variation of airborne particulate matter in five areas in Istanbul, Turkey. Environmental Science and Pollution Research, 19, 1198–1209.

    Article  Google Scholar 

  • Shaughnessy, William J., Venigalla, M. M., & Trump, D. (2015). Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population. Atmospheric Environment, 123, 102–111.

    Article  CAS  Google Scholar 

  • Shindell, D., Kuylenstierna, J. C. I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., et al. (2012). Simultaneously mitigating near-term climate change and improving human health and food security. Science, 335, 183–189.

    Article  CAS  Google Scholar 

  • Spurny, K. R. (1998). On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): New advances. Toxicology Letters, 96–97, 253–261.

    Article  Google Scholar 

  • Tegen, I., Lacis, A. A., & Fung, I. (1996). The influence on climate forcing of mineral aerosols from disturbed soils. Nature, 380, 419–422.

    Article  CAS  Google Scholar 

  • US Environmental Protection Agency, Green Book, as of October 8, 2004. (2004). http://www.epa.gov/air/oaqps/greenbk/o3co.html.

  • Wang, Y., Stein, A. F., Draxler, R. R., de la Rosa, J. D., & Zhang, X. (2011). Global sand and dust storms in 2008: Observation and HYSPLIT model verification. Atmospheric Environment, 45, 6368–6381.

    Article  CAS  Google Scholar 

  • Wang, J., Pan, Y., Tian, S., Chen, X., Wang, L., & Wang, Y. (2016). Size distributions and health risks of particulate trace elements in rural areas in northeastern China. Atmospheric Research, 168, 191–204.

    Article  CAS  Google Scholar 

  • Xu, L., Yang, F., Abula, A., & Qin, S. (2013). A parametric bootstrap approach for two-way ANOVA in presence of possible interactions with unequal variances. Journal of Multivariate Analysis, 115, 172–180.

    Article  Google Scholar 

  • Zereini, F., Alt, F., Messerschmidt, J., Wiseman, C., Feldmann, I., von Bohlen, A., et al. (2005). Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. Environmental Science & Technology, 39, 2983–2989.

    Article  CAS  Google Scholar 

  • Zhang, J. (2012). An approximate degrees of freedom test for heteroscedastic two-way ANOVA. Journal of Statistical Planning and Inference, 142(1), 336–346.

    Article  Google Scholar 

  • Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment, 408, 726–733.

    Article  CAS  Google Scholar 

  • Zhou, J., Wu, S., Pan, Y., Zhang, L., Cao, Z., Zhang, X., et al. (2015). Enrichment of heavy metals in fine particles of municipal solid waste incinerator (MSWI) fly ash and associated health risk. Waste Management, 43, 239–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Science Council of the ROC (Taiwan) for financial support under project No. NSC 103-2221-E-241-004-MY3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guor-Cheng Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, GC., Lo, CT., Zhuang, YJ. et al. Seasonal variations and sources study by way of back trajectories and ANOVA for ambient air pollutants (particulates and metallic elements) within a mixed area at Longjing, central Taiwan: 1-year observation. Environ Geochem Health 39, 99–108 (2017). https://doi.org/10.1007/s10653-016-9810-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9810-8

Keywords

Navigation