Skip to main content
Log in

Effect of solitary wave on viscous-fluid flow in bottom cavity

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

This study mainly focuses on the interaction between a solitary wave and a bottom cavity. Vortex formation in cavities with different aspect ratios and different Reynolds numbers is considered, revealing the effects on flow patterns, primary vortex trajectories, and transport of imagined particles by the fluid in the cavity. Both numerical and experimental approaches are employed to analyze the vortex motions in cavity flow. The numerical model is based on stream function–vorticity formulations, and the transient body-fit grid combined with an overset grid is adopted for grid systems. To increase computing efficiency, the finite difference method for stream function and the finite analytic method for vorticity are combined to calculate the flow field equations. Part of the experiment uses particle tracing to visualize cavity flow. The numerical results are consistent with the experimental observations and measurements. In the computational case, the Reynolds number is defined from the undisturbed water depth and the linear-long-wave celerity. Three values of Re (Re = 80,000, 8000, and 800) are mainly studied to distinguish their behavior. For lower Re (e.g., Re = 800), a smaller fraction of particles are removed from a wide cavity (e.g., width larger or equal to twice the water depth) For this type of cavity, independent of Re, more particles are removed from the upper right of the cavity than from the upper left area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. http://en.wikipedia.org/wiki/Diego_Garcia.

  2. https://student.societyforscience.org/blog/eureka-lab/digging-trench-stop-tsunami.

References

  1. Chang CH, Tang CJ, Lin C (2012) Vortex generation and flow pattern development after a solitary wave passing over a bottom cavity. Comput Fluids 53:79–92

    Article  Google Scholar 

  2. Chen CJ, Chen HC (1984) Finite analytic numerical method for unsteady two-dimensional Navier Stokes equations. J Comput Phys 53:209–226

    Article  Google Scholar 

  3. Daily JW, Stephan SC (1953) Engineering aspects of water waves: a symposium: characteristics of the solitary wave. Trans ASCE 118(1):575–587

    Google Scholar 

  4. Dean RG, Dalrymple RA (1984) Water waves mechanics for engineers and scientists. Englewood Cliffs. Prentice Hall, New Jersey

    Google Scholar 

  5. Dong CM, Huang CJ (2004) Generation and propagation of water waves in a two-dimensional numerical viscous wave flume. J Waterw Port Coast Ocean Eng 130(3):143–153

    Article  Google Scholar 

  6. Fenton J (1972) A ninth-order solution for the solitary wave. J Fluid Mech 52:257–271

    Article  Google Scholar 

  7. Goring DG (1978) Tsunami: the propagation of long waves onto a shelf, Report No. KH-R-38, W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, California, USA

  8. Grimshaw R (1971) The solitary wave in water of variable depth (Part 2). J Fluid Mech 46 part 3:611–622

  9. Lin C, Chang SC, Ho TC, Chang KA (2006) Laboratory observation of solitary wave propagating over a submerged rectangular dike. J Eng Mech 132(5):545–554

    Article  Google Scholar 

  10. Lin C, Ho TC, Chang SC, Hsieh SC, Chang KA (2005) Vortex shedding induced by a solitary wave propagating over a submerged vertical plate. Int J Heat Fluid Flow 26:894–904

    Article  Google Scholar 

  11. Liu PLF, Al-Banaa K (2004) Solitary wave run-up and force on a vertical barrier. J Fluid Mech 505:225–233

    Article  Google Scholar 

  12. Lo DC, Young DL (2006) Numerical simulation of solitary waves using velocity–vorticity formulation of Navier-Stokes equations. J Eng Mech 132(2):211–219

    Article  Google Scholar 

  13. Nallasamy M (1986) Numerical solution of the separation flow due to an obstruction. Comput Fluids 14(1):59–68

    Article  Google Scholar 

  14. Raghukumara C, Raghukumara S, Sheelub G, Guptaa SM, Natha BN, Raoa BR (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep-Sea Res I 51:1759–1768

    Article  Google Scholar 

  15. Sheppard CRC (2007) Effects of the tsunami in the Chagos archipelago. Tsunamis and Coral Reefs (Ed. Stoddart DR) 544: 135–148

  16. Tang CJ (1987) Free surface flow phenomena ahead of a two-dimensional body in a viscous fluid. Ph.D. thesis, The university of Iowa, pp 14–15

  17. Tang CJ, Patel VC, Landweber L (1990) Viscous effects on propagation and reflection of solitary waves in shallow channel. J Comput Phys 88:86–113

    Article  Google Scholar 

  18. Tang CJ, Chang JH (1998) Flow separation during a solitary wave passing over a submerged obstacle. J Hydraul Eng 124(7):732–749

    Article  Google Scholar 

  19. Tian ZF, Yu PX (2011) An efficient compact difference scheme for solving the streamfunction formulation of the incompressible Navier-Stokes equations. J Comput Phys 230:6404–6419

    Article  Google Scholar 

  20. Ting FCK, Kim YK (1994) Vortex generation in water waves propagating over a submerged obstacle. Coast Eng 24:23–49

    Article  Google Scholar 

  21. Wu NJ, Tsay TK, Chen YY (2014) Generation of stable solitary waves by a piston-type wave maker. Wave Motion 51(2):240–255

    Article  Google Scholar 

Download references

Acknowledgments

This study was sponsored by a project of the Ministry of Science and Technology, Taiwan, Republic of China (Serial No. NSC 102-2221-E-275-001-MY2). The authors would like to thank Enago (www.enago.tw) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chih-Hua Chang.

Appendices

Appendix 1: grid transformed coefficients and FAM formulations

In this paper, the physical domain is transformed into the computational domain based on the geometric relations between curvilinear grids and Cartesian grids. The definitions of grid transformation coefficients used in this paper are listed below:

$$ J = \left( {x_{\xi } y_{\eta } - y_{\xi } x_{\eta } } \right), $$
$$ g^{11} = {{\left( {x_{\eta }^{2} + y_{\eta }^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {x_{\eta }^{2} + y_{\eta }^{2} } \right)} {J^{2} }}} \right. \kern-0pt} {J^{2} }}, $$
$$ g^{22} = {{\left( {x_{\xi }^{2} + y_{\xi }^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {x_{\xi }^{2} + y_{\xi }^{2} } \right)} {J^{2} }}} \right. \kern-0pt} {J^{2} }}, $$
$$ g^{12} = {{ - \left( {x_{\xi } x_{\eta } + y_{\xi } y_{\eta } } \right)} \mathord{\left/ {\vphantom {{ - \left( {x_{\xi } x_{\eta } + y_{\xi } y_{\eta } } \right)} {J^{2} }}} \right. \kern-0pt} {J^{2} }}, $$
$$ f^{1} = {{\left[ {\left( {Jg^{11} } \right)_{\xi } + \left( {Jg^{12} } \right)_{\eta } } \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {Jg^{11} } \right)_{\xi } + \left( {Jg^{12} } \right)_{\eta } } \right]} J}} \right. \kern-0pt} J}, $$

and

$$ f^{2} = {{\left[ {\left( {Jg^{12} } \right)_{\xi } + \left( {Jg^{22} } \right)_{\eta } } \right]} \mathord{\left/ {\vphantom {{\left[ {\left( {Jg^{12} } \right)_{\xi } + \left( {Jg^{22} } \right)_{\eta } } \right]} J}} \right. \kern-0pt} J}, $$

where J is the Jacobian of transformation.

The FAM was first developed by Chen and Chen [2]. To express the two-dimensional convective-diffusion equations in standard FAM formulation, we use

$$ \xi^{*} = {{{\xi \mathord{\left/ {\vphantom {\xi {\sqrt {g^{11} } ;\;\eta^{*} = \eta }}} \right. \kern-0pt} {\sqrt {g^{11} } ;\;\eta^{*} = \eta }}} \mathord{\left/ {\vphantom {{{\xi \mathord{\left/ {\vphantom {\xi {\sqrt {g^{11} } ;\;\eta^{*} = \eta }}} \right. \kern-0pt} {\sqrt {g^{11} } ;\;\eta^{*} = \eta }}} {\sqrt {g^{22} } }}} \right. \kern-0pt} {\sqrt {g^{22} } }}. $$
(12)

With these variables, Eq. (1) becomes

$$ 2A_{\psi } \psi_{{\xi^{*} }} + 2B_{\psi } \psi_{{\eta^{*} }} = \psi_{{\xi^{*} \xi^{*} }} + \psi_{{\eta^{*} \eta^{*} }} + S_{\psi } , $$
(13)

where \( A_{\psi } = {{ - f^{1} /2} \mathord{\left/ {\vphantom {{ - f^{1} /2} {\sqrt {g^{11} } }}} \right. \kern-0pt} {\sqrt {g^{11} } }} \); \( B_{\psi } = {{{{ - f^{2} } \mathord{\left/ {\vphantom {{ - f^{2} } 2}} \right. \kern-0pt} 2}} \mathord{\left/ {\vphantom {{{{ - f^{2} } \mathord{\left/ {\vphantom {{ - f^{2} } 2}} \right. \kern-0pt} 2}} {\sqrt {g^{22} } }}} \right. \kern-0pt} {\sqrt {g^{22} } }} \), and \( S_{\psi } = - 2g^{12} \psi_{\xi \eta } - \omega \). The transformed transport Eq. (2) for vorticity can be expressed as

$$ 2A_{\omega } \omega_{{\xi^{*} }} + 2B_{\omega } \omega_{{\eta^{*} }} = \omega_{{\xi^{*} \xi^{*} }} + \omega_{{\eta^{*} \eta^{*} }} + S_{\omega } , $$
(14)

where \( A_{\omega } = {{{{\left( {U\text{Re} - f^{1} } \right)} \mathord{\left/ {\vphantom {{\left( {U\text{Re} - f^{1} } \right)} 2}} \right. \kern-0pt} 2}} \mathord{\left/ {\vphantom {{{{\left( {U\text{Re} - f^{1} } \right)} \mathord{\left/ {\vphantom {{\left( {U\text{Re} - f^{1} } \right)} 2}} \right. \kern-0pt} 2}} {\sqrt {g^{11} } }}} \right. \kern-0pt} {\sqrt {g^{11} } }} \); \( B_{\omega } = {{{{\left( {V\text{Re} - f^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {V\text{Re} - f^{2} } \right)} 2}} \right. \kern-0pt} 2}} \mathord{\left/ {\vphantom {{{{\left( {V\text{Re} - f^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {V\text{Re} - f^{2} } \right)} 2}} \right. \kern-0pt} 2}} {\sqrt {g^{22} } }}} \right. \kern-0pt} {\sqrt {g^{22} } }} \), and

$$ S_{\omega } = \left[ {{{2g^{12} } \mathord{\left/ {\vphantom {{2g^{12} } {\sqrt {g^{11} g^{22} } }}} \right. \kern-0pt} {\sqrt {g^{11} g^{22} } }} - {{\text{Re} \left( {\omega_{P}^{n + 1} - \omega_{P}^{n} } \right)} \mathord{\left/ {\vphantom {{\text{Re} \left( {\omega_{P}^{n + 1} - \omega_{P}^{n} } \right)} {\Delta \tau }}} \right. \kern-0pt} {\Delta \tau }}} \right]\omega_{{\xi^{*} \eta^{*} }} . $$
(15)

The cell spaces are \( \Delta \xi^{*} = h = {1 \mathord{\left/ {\vphantom {1 {\sqrt {g^{11} } }}} \right. \kern-0pt} {\sqrt {g^{11} } }} \) and \( \Delta \eta^{*} = k = {1 \mathord{\left/ {\vphantom {1 {\sqrt {g^{22} } }}} \right. \kern-0pt} {\sqrt {g^{22} } }} \).

In the FAM, the governing differential equations are discretized into algebraic equations based on an analytic solution for the small computational element (see Fig. 2). In this method, a function is commonly used that combines a linear and an exponential function for the boundary conditions. The solutions of Eqs. (12) and (13), expressed by the dummy variable \( \phi \) at node P, can be described with the nine-point values as

$$ \phi_{p} = \sum\limits_{i = NE}^{NC} {C_{i} \phi_{i} } + S_{\phi } C_{P} , $$
(16)

where the FAM coefficients are given by

$$ C_{EC} = E_{B} e^{ - Ah} ,\;C_{WC} = E_{B} e^{Ah} ,\;C_{SC} = E_{A} e^{Bk} ,\;C_{NC} = E_{A} e^{ - Bk} , $$
$$ C_{NE} = Ee^{ - Ah - Bk} ,\;C_{NW} = Ee^{Ah - Bk} ,\;C_{SE} = Ee^{ - Ah + Bk} ,\;C_{SW} = Ee^{Ah + Bk} , $$

and

$$ C_{p} = \frac{1}{{2(A^{2} + B^{2} )}}\left[ {Ah\left( {C_{NW} + C_{WC} + C_{SW} - C_{NE} - C_{EC} - C_{SE} } \right)\; +\,Bk\left( {C_{SW} + C_{SC} + C_{SE} - C_{NW} - C_{NC} - C_{NE} } \right)} \right], $$

where

$$ E = \frac{1}{4\cos \;h(Ah)\cos \;h(Bk)} - AhE_{2} \cot \;h(Ah) - BkE_{2}^{\prime} \cot \;h(Bk), $$
$$ E_{A} = 2Ah\frac{{\cos \;h^{2} Ah}}{\sin \;h(Ah)}E_{2} , $$
$$ E_{B} = 2Bh\frac{{\cos \;h^{2} Bk}}{\sin \;h(Bk)}E_{{_{2} }}^{\prime} , $$
$$ E_{2} = \sum\limits_{m = 1}^{\infty } {\frac{{ - ( - 1)^{m} (\lambda_{m} h)}}{{\left[ {(Ah)^{2} + \left( {\lambda_{m} h} \right)^{2} } \right]^{2} \cos \;h(\mu_{m} k)}}} , $$
$$ E_{{_{2} }}^{\prime} = \sum\limits_{m = 1}^{\infty } {\frac{{ - ( - 1)^{m} \left( {\lambda_{{_{m} }}^{\prime} k} \right)}}{{\left[ {(Bk)^{2} + \left( {\lambda_{{_{m} }}^{\prime} k} \right)^{2} } \right]^{2} \cos \;h\left( {\mu_{{_{m} }}^{\prime} h} \right)}}} , $$
$$ \mu_{m} = \sqrt {A^{2} + B^{2} + \lambda_{m}^{2} } , $$
$$ \lambda_{m} = (2m - 1)\pi /2/h, $$
$$ \mu_{{_{m} }}^{\prime} = \sqrt {A^{2} + B^{2} + \left( {\lambda_{m}^{\prime} } \right)^{2} } , $$

and

$$ \lambda_{{_{m} }}^{\prime} = (2m - 1)\pi /2/k. $$

Above, the variables A and B are replaced by \( A_{\psi } \) and \( B_{\psi } \) for solving Eq. (1) and by \( A_{\omega } \) and \( B_{\omega } \) for solving Eq. (2).

Appendix 2: FDM and FAM for solving benchmark Poisson equation

Consider the Poisson equation

$$ \phi_{xx} + \phi_{yy} = 4,\;\;{\text{in}}\;\varOmega , $$
(17)

where \( \varOmega \) = \( \left\{ {\left. { (x,y )} \right| - 1 < x < 1,{\kern 1pt} {\kern 1pt} - 1 < y < 1} \right\} \), and with the Dirichlet conditions \( \left. \phi \right|_{\partial \varOmega } = x^{2} + y^{2} \) on the boundaries (\( \partial \varOmega \)). The exact solution is

$$ \phi (x, y )= x^{2} + y^{2} . $$
(18)

We adopt a square grid with x and y mesh lengths h = k and draw lines parallel to the axes x = i × h = ih and y = j × k = jh. Their intersections (ih, jh) are denoted as (i, j). For the FDM solution, we substitute the second-order central difference along x and y for \( \phi_{xx} \) and \( \phi_{yy} \), in which case Eq. (17) leads to

$$ \frac{{\phi_{i + 1,j} - 2\phi_{i,j} + \phi_{i - 1,j} }}{{h^{2} }} + \frac{{\phi_{i,j + 1} - 2\phi_{i,j} + \phi_{i,j - 1} }}{{h^{2} }} = 4. $$
(19)

We calculate \( \phi_{i,j} \) in a tri-diagonal matrix.

For the FAM treatment of Eq. (17) contrasting to Eq. (13), \( A_{\psi } = B_{\psi } = 0 \) and \( S_{\psi } = 4 \). Furthermore, \( \Delta \xi^{*} = h = 1/\sqrt {g^{11} } \) equates to \( \Delta \eta^{*} = k = 1/\sqrt {g^{22} } . \)

Appendix 3: FDM solver for Poisson equation of stream function

Here we use the FDM to solve the general curvilinear form of the Poisson equation of the stream function. Equation (12) is discretized for the FDM using the implicit central-difference scheme. It can be expressed as

$$ \begin{gathered} - C_{SC} \psi_{i,j - 1} + \psi_{i,j} - C_{NC} \psi_{i,j + 1} = C_{SW} \psi_{i - 1,j - 1} + C_{WC} \psi_{i - 1,j} + C_{NW} \psi_{i - 1,j + 1} \hfill \\ \quad\,+\,C_{SE} \psi_{i + 1,j - 1} + C_{EC} \psi_{i + 1,j} + C_{NE} \psi_{i + 1,j + 1} , \hfill \\ \end{gathered} $$
(20)

where

$$ C_{SW} = C_{NE} = g^{12} /2G, $$
$$ C_{WC} = {{\left( {2g^{11} - f^{1} } \right)} \mathord{\left/ {\vphantom {{\left( {2g^{11} - f^{1} } \right)} {2G}}} \right. \kern-0pt} {2G}}, $$
$$ C_{NW} = C_{SE} = {{ - g^{12} } \mathord{\left/ {\vphantom {{ - g^{12} } {2G}}} \right. \kern-0pt} {2G}}, $$
$$ C_{SC} = {{\left( {2g^{22} - f^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {2g^{22} - f^{2} } \right)} {2G}}} \right. \kern-0pt} {2G}}, $$
$$ C_{NC} = {{\left( {2g^{22} + f^{2} } \right)} \mathord{\left/ {\vphantom {{\left( {2g^{22} + f^{2} } \right)} {2G}}} \right. \kern-0pt} {2G}}, $$
$$ C_{EC} = {{\left( {2g^{11} + f^{1} } \right)} \mathord{\left/ {\vphantom {{\left( {2g^{11} + f^{1} } \right)} {2G}}} \right. \kern-0pt} {2G}}, $$

and

$$ G = 2\left( {g^{11} + g^{22} } \right)\;. $$

Similarly, Eq. (20) can be solved using a tri-diagonal matrix.

Appendix 4: Tests for specific gravity and size distribution of seeding tracers

The specific gravity and size distribution of seeding particles (i.e., titanium dioxide, TiO2) were tested by using the Matsu-Haka High Precision Density Tester (GP-120T) as well as a Laser Scattering and Transmissometry device (LISST-100X, Sequoia Scientific Inc.). The specific gravity and mean diameter (d 50) of the seeding particles are 3.517 and 1.8 μm, respectively. The settling velocity of the titanium oxide particles (with specific gravity of 3.52 and a mean diameter of 1.8 μm), estimated from Stokes’ law, is about 4.5 × 10−4 cm/s, which is much smaller than the characteristic velocities in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, CH., Lin, C. Effect of solitary wave on viscous-fluid flow in bottom cavity. Environ Fluid Mech 15, 1135–1161 (2015). https://doi.org/10.1007/s10652-015-9402-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-015-9402-7

Keywords

Navigation