Skip to main content

Advertisement

Log in

On the relations between historical epistemology and students’ conceptual developments in mathematics

  • Published:
Educational Studies in Mathematics Aims and scope Submit manuscript

Abstract

There is an ongoing discussion within the research field of mathematics education regarding the utilization of the history of mathematics within mathematics education. In this paper we consider problems that may emerge when the historical epistemology of mathematics is paralleled to students’ conceptual developments in mathematics. We problematize this attempt to link the two fields on the basis of Grattan-Guinness’ distinction between “history” and “heritage”. We argue that when parallelism claims are made, history and heritage are often mixed up, which is problematic since historical mathematical definitions must be interpreted in its proper historical context and conceptual framework. Furthermore, we argue that cultural and local ideas vary at different time periods, influencing conceptual developments in different directions regardless of whether historical or individual developments are considered, and thus it may be problematic to uncritically assume a platonic perspective. Also, we have to take into consideration that an average student of today and great mathematicians of the past are at different cognitive levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. “La tâche de l’éducateur est de faire reprasser l’esprit de l’enfant par où a passé celui de ses pères.”

  2. A well–known debate regarding this issue can be found in Unguru (1975) and Weil (1978).

  3. Discussions regarding modern interpretations of Greek mathematics can be found in Grattan-Guinness (2004a, b).

  4. “Functio quantitatis variabilis est expressio analytica quomodocunque composita ex illa quantitate variabili et numeris seu quantitatibus constantibus.”

  5. “Quae autem quantitates hoc modo ab aliis pendent, ut his mutatis etiam ipsae mutationes subeant, eae harum functiones appellari solent; quae denominatio latissime patet atque omnes modos, quibus una quantitas per alias determinari potest, in se complectitur. Si igitur x denotet quantitatem variabilem, omnes quantitates, quae utcunque ab x pendent seu per eam determinantur, eius functiones vocantur.”

  6. “On appelle quantités variables celles qui augmentent ou diminuent continuellement; & au contraire quanitités constantes celles qui demeurent les mêmes pendant que les autres changent.”

  7. This conclusion is similar to the conclusion of Viirman et al. (2010, p. 5) that we referred to above: “the definitions given by the students mostly resemble an 18th or 19th century view of functions”.

References

  • Bagni, G. T. (2004). Exhaustion argument and limit concept in the history of mathematics: Educational reflections. In F. Furinghetti, S. Kaiser, & A. Vretblad (Eds.), Proceedings of History and Pedagogy of Mathematics 2004, Uppsala. (pp. 94–103). Uppsala, Sweden: University of Uppsala.

  • Cardano, G. (1993). Ars Magna or The rules of algebra (T. R. Witmer, Ed. & Trans.). New York: Dover Publications. (Original work published 1545), Dover Publications. (Original work published 1545). New York.

  • Domingues, J. C. (2004). Variables, limits, and infinitesimals in Portugal in the late 18th century. Historia Mathematica, 31(1), 15–33.

    Article  Google Scholar 

  • Euler, L. (1748). Introductio in analysin infinitorum [Introduction to the analysis of the infinite]. Lausanne: Marcum Michaelem Bousquet.

  • Euler, L. (1755). Institutiones calculi differentialis cum ejus usu in analysi finitorum ac doctrina serierum [Foundations of differential calculus, with applications to finite analysis and series]. Petropolitanae: Academiae imperialis scientiarum.

  • Farmaki, V., & Paschos, T. (2007). Employing genetic moments in the history of mathematics in classroom activites. Educational Studies in Mathematics, 66, 83–106.

    Article  Google Scholar 

  • Fauvel, J. G. (1991). Using history in mathematics education. For the Learning of Mathematics, 11(2), 3–6.

    Google Scholar 

  • Fenaroli, G., Furinghetti, F., & Somaglia, A. (2014). Rethinking mathematical concepts with the lens of the history of mathematics: An experiment with prospective secondary teachers. Science & Education, 23, 185–203.

    Article  Google Scholar 

  • Fried, M. N. (2001). Can mathematics education and history of mathematics coexist? Science & Education, 10(4), 391–408.

    Article  Google Scholar 

  • Fried, M. N. (2007). Didactics and history of mathematics: Knowledge and self-knowledge. Educational Studies in Mathematics, 66, 203–223.

    Article  Google Scholar 

  • Furinghetti, F., & Radford, L (2002). Historical conceptual developments and the teaching of mathematics: From phylogenesis and ontogenesis theory to classroom practise. In L. English (Ed.), Handbook of international research in mathematics education (pp. 631–654). Mahwah, NJ: Lawrence Erlbaum.

  • Furinghetti, F., & Radford, L (2008). Contrasts and oblique connections between historical conceptual developments and classroom learning in mathematics. In L. English (Ed.), Handbook of international research in mathematics education, 2nd ed. (pp. 626–655). New York: Routledge, Taylor and Francis.

  • Glaubitz, M. (2011). The use of original sources in the classroom: Empirical research findings. In E. Barbin, M. Kronfellner, & C. Tzanakis (Eds.), Proceedings of the 6th European Summer University on the History and Epistemology in Mathematics Education (pp. 351–361). Wien: Holzhausen Verlag.

  • Grattan-Guinness, I. (2004a). History or heritage? An important distinction in mathematics and for mathematics education. The American Mathematical Monthly, 111 (1), 1–12.

    Article  Google Scholar 

  • Grattan-Guinness, I. (2004b). The mathematics of the past: Distinguishing its history from our heritage. Historia Mathematica, 31(3), 163–185.

    Article  Google Scholar 

  • Jahnke, H. N. (2000). The use of original sources in the mathematics classroom. In J. Fauvel, & J. van Maanen (Eds.), History in mathematics education: The ICMI study. Dordrecht/Boston/London: Kluwer, Chapter 9.

  • Jankvist, U. T. (2009). A caterigorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71, 235–261.

    Article  Google Scholar 

  • Jankvist, U. T. (2011). Anchoring students’ metaperspective discussion of history in mathematics. Journal for Research in Mathematics Education, 42(4), 344–383.

    Google Scholar 

  • Jankvist, U. T., & Kjeldsen, T. H. (2011). New avenues for history in mathematics education: Mathematical competencies and anchoring. Science & education, 20(9), 831–862.

    Article  Google Scholar 

  • Juter, K. (2006). Limits of functions as they developed through time and as students learn them today. Mathematical Thinking and Learning, 8(4), 407–431.

    Article  Google Scholar 

  • Kjeldsen, T. H., & Petersen, P. H. (2014). Bridging history of the concept of function with learning of mathematics: Students’ meta-discursive rules, concept formation and historical awareness. Science & Education, 23(1), 29–45.

    Article  Google Scholar 

  • Lam, L. Y. (1994). Jiu zhang suanshu (Nine chapters on the mathematical art): An overview. Archive for History of Exact Sciences, 47, 1–51.

    Article  Google Scholar 

  • Lam, L. Y., & Ang, T. S. (2004). Fleeting footsteps: Tracing the conception of Arithmetic and Algebra in ancient China (Rev. ed.). Singapore: World Scientific.

  • Lam, L. Y., & Shen, K. (1989). Methods of solving linear equations in traditional China. Historia Mathematica, 16, 107–205.

    Article  Google Scholar 

  • l’Hospital, G. F. A. (1696). Analyse des infiniment petits pour l’intelligence des lignes courbes [Analysis of the infinitely small to understand curves]. Paris: (n.p.).

  • Moreno, L. E., & Waldegg, G. (1991). The conceptual evolution of actual mathematical infinity. Educational Studies in Mathematics, 22, 211–231.

    Article  Google Scholar 

  • Mosvold, R. (2003). Genesis principles in mathematics education. In O. Bekken, & R. Mosvold (Eds.), Study the Masters (pp. 85–96). Göteborg: Nationellt Centrum för Matematikutbildning.

  • Mumford, D. (2010). What’s so baffling about negative numbers? – A cross-cultural comparison. In C.S. Seshadri (Ed.), Studies in the history of Indian mathematics (pp. 113–143). New Delhi: Hindustan Book Agency.

  • Palmgren, E. (2007). Icke-standardanalys och historiska infinitesimaler [Non-standard analysis and historical infinitesimals]. Normat, 55(4), 166–176.

    Google Scholar 

  • Panagiotou, E. (2011). Using history to teach mathematics: The case of logarithms. Science & Education, 20, 1–35.

    Article  Google Scholar 

  • Pengelley, D. (2011). Teaching with primary historical sources: Should it go mainstream? Can it? In V. Katz, & C. Tzanakis (Eds.), Recent developments in introducing a historical dimension in mathematics education (pp. 1–8). Washington, D.C.: Mathematical Association of America.

  • Pengelley, D. (2012). Teaching number theory from Sophie Germain’s manuscripts: A guided discovery pedagogy. Proceedings, HPM 2012 (pp. 103–113). Korea: Daejeon.

  • Piaget, J., & Garcia, R. (1989). Psychogenesis and the history of science. New York: Columbia University Press.

    Google Scholar 

  • Poincaré, H. (1899). La logique et l’intuition dans la science mathématique et dans l’enseignement [Logic and intuition in mathematical science and education]. L’Enseignement Mathématique, 1, 157–162.

    Google Scholar 

  • Radford, L. (1997). On psychology, historical epistemology, and the teaching of mathematics: Towards a socio-cultural history of mathematics. For the Learning of Mathematics, 17(1), 26–33.

    Google Scholar 

  • Radford, L. (2000). Historical formation and student understanding of mathematics. In J. Fauvel, & J. van Maanen (Eds.), History in mathematics education: The ICMI study (pp. 143–170). Dordrecht: Kluwer.

  • Robinson, A. (1996). Non-Standard Analysis. Princeton, N.J.: Princeton University Press.

    Google Scholar 

  • Rogers, L. (2010). History, heritage and the UK mathematics classroom. In V. Durand, S. Soury-Lavergne, & F. Arzarello (Eds.), Proceedings of CERME 6, Working group 15: Theory and research on the role of history in mathematics education (pp. 2781–2790). Lyon, France: INRP.

  • Schmieden, C., & Laugwitz, D. (1958). Eine Erweiterung der Infinitesimalrechnung [An extension of the calculus]. Mathematisches Zeitschrift, 69, 1–39.

    Article  Google Scholar 

  • Schubring, G. (2005). Conflicts between generalization, rigor, and intuition. New York: Springer.

    Google Scholar 

  • Schubring, G. (2011). Conceptions for relating the evolution of mathematical concepts to mathematics learning–epistemology, history, and semiotics interacting. Educational Studies in Mathematics, 77(1), 79–104.

    Article  Google Scholar 

  • Sfard, A (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as different sides of the same coin. Educational Studies in Mathematics, 22, 1–36.

    Article  Google Scholar 

  • Sfard, A. (1995). The development of algebra: Confronting historical and psychological perspectives. Journal of Mathematical Behavior, 14, 15–39.

    Article  Google Scholar 

  • Siu, M. K. (2000). Historical support for particular subjects. In J. Fauvel, & J. van Maanen (Eds.), History in mathematics education: The ICMI study (pp. 241–290). Dordrecht: Kluwer. Line.

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics, with special reference to limits and continuity. Educational Studies in Mathematics, 12 (2), 151–169.

    Article  Google Scholar 

  • Thomaidis, Y. (1993). Aspects of negative numbers in the early 17th century. Science and Education, 2, 69–86.

    Google Scholar 

  • Thomaidis, Y., & Tzanakis, C. (2007). The notion of historical parallelism revisited: Historical evolution and students’ conception of the order relation on the number line. Educational Studies in Mathematics, 66(2), 165–183.

    Article  Google Scholar 

  • Tzanakis, C., & Arcavi, A. (2000). Integrating history of mathematics in the classroom: An analytic survey. In J. Fauvel, & J. van Maanen (Eds.), History in mathematics education: The ICMI Study (pp. 201–240). Dordrecht: Kluwer.

  • Tzanakis, C., & Thomaidis, Y. (2011). Classifying the arguments and methods to integrate history, in mathematics education: An example. In E. Barbin, M. Kronfellner, & C. Tzanakis (Eds.), Proceedings of the 6th European summer university on the history and epistemology in mathematics education (pp. 127–136). Wien: Holzhausen Verlag.

  • Tzanakis, C., & Thomaidis, Y. (2012). Classifying the arguments and methodological schemes for integrating history in mathematics education. In B. Sriraman (Ed.) Crossroads in the history of mathematics and mathematics education: The Montana mathematics enthusiast monographs (Vol. 12, pp. 247–295). Charlotte, NC: Information Age Publishing.

  • Unguru, S. (1975). On the need to rewrite the history of Greek mathematics. Archive for History of Exact Sciences, 15(1), 67–114.

    Article  Google Scholar 

  • Viirman, O., Attorps, I., & Tossavainen, T. (2010). Different views: Some Swedish mathematics students’ concept images of the function concept. Nordic Studies in Mathematics Education, 15(4), 5–24.

    Google Scholar 

  • Wallis, J. (1685). Treatise of Algebra. London: (n.p.).

  • Weil, A. (1978). History of mathematics: Why and how? In O. Lehto (Ed.), Proceedings on International Congress of Mathematicians, Helsinki 1978 (Vol. 1, pp. 227–443). Helsinki: Academia Scientarum Fennicia.

Download references

Acknowledgements

We would like to thank the anonymous referees with the help of whom the manuscript has improved considerably.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Pejlare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bråting, K., Pejlare, J. On the relations between historical epistemology and students’ conceptual developments in mathematics. Educ Stud Math 89, 251–265 (2015). https://doi.org/10.1007/s10649-015-9600-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10649-015-9600-8

Keywords

Navigation