Skip to main content
Log in

Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia)

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Understanding the effects of trace metals emitted by anthropogenic activities on wildlife is of great concern in urban ecology; yet, information on how they affect individuals, populations, communities and ecosystems remains scarce. In particular, trace metals may impact survival by altering the immune system response to parasites. Plumage melanin is assumed to influence the effects of trace metals on immunity owing to its ability to bind metal ions in feathers and its synthesis being coded by a pleiotropic gene. We thus hypothesized that trace metal exposure would interact with plumage colouration in shaping immune response. We experimentally investigated the interactive effect between exposure to an environmentally relevant range of zinc and/or lead and melanin-based plumage colouration on components of the immune system in feral pigeons (Columba livia). We found that zinc increased anti-keyhole limpet hemocyanin (KLH) IgY primary response maintenance, buffered the negative effect of lead on anti-KLH IgY secondary response maintenance and tended to increase T-cell mediated phytohaemagglutinin (PHA) skin response. Lead decreased the peak of the anti-KLH IgY secondary response. In addition, pheomelanic pigeons exhibited a higher secondary anti-KLH IgY response than did eumelanic ones. Finally, T-cell mediated PHA skin response decreased with increasing plumage eumelanin level of birds exposed to lead. Neither treatments nor plumage colouration correlated with endoparasite intensity. Overall, our study points out the effects of trace metals on some parameters of birds’ immunity, independently from other confounding urbanization factors, and underlines the need to investigate their impacts on other life history traits and their consequences in the ecology and evolution of host–parasite interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Azimi S, Ludwig A, Thévenot DR, Colin J-L (2003) Trace metal determination in total atmospheric deposition in rural and urban areas. Sci Total Environ 308:247–256

    Article  CAS  Google Scholar 

  • Azimi S, Rocher V, Muller M et al (2005) Sources, distribution and variability of hydrocarbons and metals in atmospheric deposition in an urban area (Paris, France). Sci Total Environ 337:223–239. doi:10.1016/j.scitotenv.2004.06.020

    Article  CAS  Google Scholar 

  • Babich H, Stotzky G (1978) Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions. Appl Environ Microbiol 36:906–914

    CAS  Google Scholar 

  • Biasioli M, Barberis R, Ajmonemarsan F (2006) The influence of a large city on some soil properties and metals content. Sci Total Environ 356:154–164. doi:10.1016/j.scitotenv.2005.04.033

    Article  CAS  Google Scholar 

  • Bilos C, Colombo J, Skorupka C, Rodriguez Presa M (2001) Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ Pollut 111:149–158. doi:10.1016/S0269-7491(99)00328-0

    Article  CAS  Google Scholar 

  • Borella P, Giardino A (1991) Lead and cadmium at very low doses affect in vitro immune response of human lymphocytes. Environ Res 55:165–177. doi:10.1016/S0013-9351(05)80173-2

    Article  CAS  Google Scholar 

  • Bridelli MG, Crippa PR (2007) Theoretical analysis of the adsorption of metal ions to the surface of melanin particles. Adsorption 14:101–109. doi:10.1007/s10450-007-9059-8

    Article  Google Scholar 

  • Burger J (1993) Metals in avian feathers: bioindicators of environmental pollution. Rev Environ Contam Toxicol 5:203–311

    Google Scholar 

  • Cerklewski FL, Forbes RM (1976) Influence of dietary zinc on lead toxicity in the rat. J Nutr 106:689–696

    CAS  Google Scholar 

  • Chandra RK, Dayton DH (1982) Trace element regulation of immunity and infection. Nutr Res 2:721–733. doi:10.1016/S0271-5317(82)80116-4

    Article  CAS  Google Scholar 

  • Chatelain M, Gasparini J, Jacquin L, Frantz A (2014) The adaptive function of melanin-based plumage coloration to trace metals. Biol Lett 10:20140164–20140164. doi:10.1098/rsbl.2014.0164

    Article  CAS  Google Scholar 

  • Chatelain M, Gasparini J, Frantz A (2015) Do trace metals select for darker birds in urban areas? An experimental exposure to lead and zinc. Glob Change Biol. doi:10.1111/gcb.13170

    Google Scholar 

  • Chen TB, Wong JWC, Zhou HY, Wong MH (1997) Assessment of trace metal distribution and contamination in surface soils of Hong Kong. Environ Pollut 96:61–68. doi:10.1016/S0269-7491(97)00003-1

    Article  CAS  Google Scholar 

  • Dauwe L, Bervoets R, Blust R, Eens M (2002) Tissue levels of lead in experimentally exposed zebra finches (Taeniopygia guttata) with particular attention on the use of feathers as biomonitors. Arch Environ Contam Toxicol 42:88–92. doi:10.1007/s002440010295

    Article  CAS  Google Scholar 

  • Di Lorenzo L, Silvestroni A, Martino MG et al (2006) Evaluation of peripheral blood neutrophil leucocytes in lead-exposed workers. Int Arch Occup Environ Health 79:491–498. doi:10.1007/s00420-005-0073-4

    Article  Google Scholar 

  • Ducrest A, Keller L, Roulin A (2008) Pleiotropy in the melanocortin system, coloration and behavioural syndromes. Trends Ecol Evol 23:502–510. doi:10.1016/j.tree.2008.06.001

    Article  Google Scholar 

  • El-Gazzar RM, Finelli VN, Boiano J, Petering HG (1978) Influence of dietary zinc on lead toxicity in rats. Toxicol Lett 1:227–234. doi:10.1016/0378-4274(78)90053-X

    Article  CAS  Google Scholar 

  • Evans NA (1982) Effect of copper and zinc upon the survival and infectivity of Echinoparyphium recurvatum cercariae. Parasitology 85:295. doi:10.1017/S003118200005527X

    Article  CAS  Google Scholar 

  • Fair MRE, Ricklefs J (2002) Physiological, growth, and immune responses of Japanese quail chicks to the multiple stressors of immunological challenge and lead shot. Arch Environ Contam Toxicol 42:77–87. doi:10.1007/s002440010294

    Article  CAS  Google Scholar 

  • Faith RE, Luster MI, Kimmel CA (1979) Effects of chronic developmental lead exposure on cell-mediated immune functions. Clin Exp Immunol 35:413–420

    CAS  Google Scholar 

  • Frantz A, Pottier M-A, Karimi B et al (2012) Contrasting levels of heavy metals in the feathers of urban pigeons from close habitats suggest limited movements at a restricted scale. Environ Pollut 168:23–28. doi:10.1016/j.envpol.2012.04.003

    Article  CAS  Google Scholar 

  • Galván I, Møller AP (2013) Pheomelanin-based plumage coloration predicts survival rates in birds. Physiol Biochem Zool 86:184–192. doi:10.1086/668871

    Article  Google Scholar 

  • Gasparini J, Bize P, Piault R et al (2009) Strength and cost of an induced immune response are associated with a heritable melanin-based colour trait in female tawny owls. J Anim Ecol 78:608–616. doi:10.1111/j.1365-2656.2008.01521.x

    Article  Google Scholar 

  • Gasparini J, Jacquin L, Laroucau K et al (2014) Relationships between metals exposure and epidemiological parameters of two pathogens in urban pigeons. Bull Environ Contam Toxicol 92:208–212. doi:10.1007/s00128-013-1172-7

    Article  CAS  Google Scholar 

  • Grasman KA, Scanlon PF (1995) Effects of acute lead ingestion and diet on antibody and T-cell-mediated immunity in Japanese quail. Arch Environ Contam Toxicol 28:161–167

    Article  CAS  Google Scholar 

  • Haase E, Ito S, Sell A, Wakamatsu K (1992) Melanin concentrations in feathers from wild and domestic pigeons. J Hered 83:64–67

    CAS  Google Scholar 

  • Hawkey CM, Denett TB (1989) A colour atlas of comparative veterinary haematology. Iowa State University Press, Ames

    Google Scholar 

  • Jacquin L, Lenouvel P, Haussy C et al (2011) Melanin-based coloration is related to parasite intensity and cellular immune response in an urban free living bird: the feral pigeon Columba livia. J Avian Biol 42:11–15. doi:10.1111/j.1600-048X.2010.05120.x

    Article  Google Scholar 

  • Jacquin L, Recapet C, Bouche P et al (2012) Melanin-based coloration reflects alternative strategies to cope with food limitation in pigeons. Behav Ecol 23:907–915. doi:10.1093/beheco/ars055

    Article  Google Scholar 

  • Jacquin L, Haussy C, Bertin C et al (2013) Darker female pigeons transmit more specific antibodies to their eggs than do paler ones. Biol J Linn Soc 108:647–657

    Article  Google Scholar 

  • Johnston R, Janiga M (1995) Feral pigeons. Oxford University Press, New York

    Google Scholar 

  • Kim D, Lawrence DA (2000) Immunotoxic effects of inorganic lead on host resistance of mice with different circling behavior preferences. Brain Behav Immun 14:305–317. doi:10.1006/brbi.2000.0609

    Article  CAS  Google Scholar 

  • Larsson B, Tjälve H (1978) Studies on the melanin-affinity of metal ions. Acta Physiol Scand 104:479–484. doi:10.1111/j.1748-1716.1978.tb06303.x

    Article  CAS  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98. doi:10.1034/j.1600-0706.2000.880110.x

    Article  Google Scholar 

  • Maas S, Scheifler R, Benslama M et al (2010) Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean City of Algeria. Environ Pollut 158:2294–2301. doi:10.1016/j.envpol.2010.02.001

    Article  CAS  Google Scholar 

  • Manta DS, Angelone M, Bellanca A et al (2002) Heavy metals in urban soils: a case study from the City of Palermo (Sicily), Italy. Sci Total Environ 300:229–243. doi:10.1016/S0048-9697(02)00273-5

    Article  CAS  Google Scholar 

  • Matson KD, Ricklefs RE, Klasing KC (2005) A hemolysis–hemagglutination assay for characterizing constitutive innate humoral immunity in wild and domestic birds. Dev Comp Immunol 29:275–286. doi:10.1016/j.dci.2004.07.006

    Article  CAS  Google Scholar 

  • Mckinnon JS, Pierotti MER (2010) Colour polymorphism and correlated characters: genetic mechanisms and evolution. Mol Ecol 19:5101–5125. doi:10.1111/j.1365-294X.2010.04846.x

    Article  Google Scholar 

  • Mishra KP (2009) Lead exposure and its impact on immune system: a review. Toxicol In Vitro 23:969–972. doi:10.1016/j.tiv.2009.06.014

    Article  CAS  Google Scholar 

  • Mishra KP, Singh VK, Rani R et al (2003) Effect of lead exposure on the immune response of some occupationally exposed individuals. Toxicology 188:251–259. doi:10.1016/S0300-483X(03)00091-X

    Article  CAS  Google Scholar 

  • Morley NJ, Crane M, Lewis JW (2001) Toxicity of cadmium and zinc to Diplostomum spathaceum (Trematoda: Diplostomidae) cercarial survival. Int J Parasitol 31:1211–1217. doi:10.1016/S0020-7519(01)00229-6

    Article  CAS  Google Scholar 

  • Nain S, Smits JEG (2011) Subchronic lead exposure, immunotoxicology and increased disease resistance in Japanese quail (Corturnix coturnix japonica). Ecotoxicol Environ Saf 74:787–792. doi:10.1016/j.ecoenv.2010.10.045

    Article  CAS  Google Scholar 

  • Nriagu JO (1979) Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere. Nature 279:409–411. doi:10.1038/279409a0

    Article  CAS  Google Scholar 

  • Obukhova N (2007) Polymorphism and phene geography of the blue rock pigeon in Europe. Russ J Genet 43:492–501

    Article  CAS  Google Scholar 

  • Prasad AS (1998) Zinc and immunity. Mol Cell Biochem 188:63–69

    Article  CAS  Google Scholar 

  • Prasad AS (2009) Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 12:646–652. doi:10.1097/MCO.0b013e3283312956

    Article  CAS  Google Scholar 

  • Redig PT, Lawler EM, Schwartz S et al (1991) Effects of chronic exposure to sublethal concentrations of lead acetate on heme synthesis and immune function in red-tailed hawks. Arch Environ Contam Toxicol 21:72–77

    Article  CAS  Google Scholar 

  • Roulin A (2004) The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biol Rev 79:815–848

    Article  Google Scholar 

  • Roux KE, Marra PP (2007) The presence and impact of environmental lead in passerine birds along an urban to rural land use gradient. Arch Environ Contam Toxicol 53:261–268. doi:10.1007/s00244-006-0174-4

    Article  CAS  Google Scholar 

  • Scheifler R, Cœurdassier M, Morilhat C et al (2006) Lead concentrations in feathers and blood of common blackbirds (Turdus merula) and in earthworms inhabiting unpolluted and moderately polluted urban areas. Sci Total Environ 371:197–205. doi:10.1016/j.scitotenv.2006.09.011

    Article  CAS  Google Scholar 

  • Smith MO (2003) Effects of different levels of zinc on the performance and immunocompetence of broilers under heat stress. Poult Sci 82:1580–1588

    Article  Google Scholar 

  • Smits JE, Bortolotti GR, Tella JL (1999) Simplifying the phytohaemagglutinin skin-testing technique in studies of avian immunocompetence. Funct Ecol 13:567–572. doi:10.1046/j.1365-2435.1999.00338.x

    Article  Google Scholar 

  • Snoeijs T, Dauwe T, Pinxten R et al (2004) Heavy metal exposure affects the humoral immune response in a free-living small songbird, the great tit (Parus major). Arch Environ Contam Toxicol. doi:10.1007/s00244-003-2195-6

    Google Scholar 

  • Sun Q, Liu D, Liu T et al (2012) Temporal and spatial distribution of trace metals in sediments from the northern Yellow Sea coast, China: implications for regional anthropogenic processes. Environ Earth Sci 66:697–705. doi:10.1007/s12665-011-1277-4

    Article  CAS  Google Scholar 

  • Thevenon F, Graham ND, Chiaradia M et al (2011) Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (Lakes Geneva and Lucerne) over the last centuries. Sci Total Environ 412–413:239–247. doi:10.1016/j.scitotenv.2011.09.025

    Article  Google Scholar 

  • Valentino M, Rapisarda V, Santarelli L et al (2007) Effect of lead on the levels of some immunoregulatory cytokines in occupationally exposed workers. Hum Exp Toxicol 26:551–556. doi:10.1177/0960327107073817

    Article  CAS  Google Scholar 

  • Youssef SA, El-Sanousi A, Afifi N, El-Brawy AM (1996) Effect of subclinical lead toxicity on the immune response of chickens to Newcastle disease virus vaccine. Res Vet Sci 60:13–16. doi:10.1016/S0034-5288(96)90123-X

    Article  CAS  Google Scholar 

  • Zhang Y, Lawrence DA (2014) Metals and autoimmune disease. In: Vohr H-W (ed) Encyclopedia of immunotoxicology. Springer, Berlin, pp 1–7

    Google Scholar 

Download references

Acknowledgments

All experiments were conducted under the authorizations of the “Ministère de l’éducation nationale, de l’enseignement supérieur et de la recherche” (Authorization N_00093.02) and the “Direction Départementale des Services Vétérinaires de Seine et-Marne” (Authorization N_77-05). We thank the “Mairie de Paris” (Thomas Charachon) for allowing the capture of birds. The Centre de Recherche en Ecologie Expérimentale et Prédictive (CEREEP) provided logistic support for the field work of this study. We thank S. Leclaire, T. Gayet, S. Pollet, S. Hasnaoui, F. Lorente, S. Perret and B. Decencière for their help all along the field work, C. Haussy for the realisation of the laboratory work and E. Aubry for metals analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Chatelain.

Ethics declarations

Conflict of interest

We testify that this study does not raise any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatelain, M., Gasparini, J. & Frantz, A. Trace metals, melanin-based pigmentation and their interaction influence immune parameters in feral pigeons (Columba livia). Ecotoxicology 25, 521–529 (2016). https://doi.org/10.1007/s10646-016-1610-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-016-1610-5

Keywords

Navigation