Skip to main content

Advertisement

Log in

Transcriptional Responses in Adult Zebrafish (Danio rerio) Exposed to Propranolol and Metoprolol

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

β-adrenergic receptor blockers (β-blockers) are widely detected in the aquatic environment; however, the effects of these pharmaceuticals on aquatic organisms remain uncertain. In this study, adult zebrafish were exposed to two different β-blockers, propranolol and metoprolol, for 96 h. After exposure, the transcriptional responses of genes encoding the β-adrenergic receptor (i.e., adrb1, adrb2a, adrb2b, adrb3a and adrb3b), genes involved in detoxification and the stress response (i.e., hsp70, tap, mt1 and mt2), and genes related to the antioxidant system (i.e., cu/zn-sod, mn-sod, cat and gpx) were examined in the brain, liver and gonad. Our results show that both propranolol and metoprolol exposure changes the mRNA level of β-adrenergic receptors, indicating clear pharmacological target engagement of the β-blockers. The transcription of genes related to antioxidant responses and detoxification process were induced, suggesting that β-blocker exposure can activate the detoxification process and result in oxidative stress in fish. Moreover, the transcriptional responses displayed substantial tissue- and gender-specific effects. Considering the environmental concentrations of propranolol and metoprolol, these results suggest that these pharmaceuticals are unlikely to pose a risk to fish. However, the impacts in prolonged exposure, along with other possible side effects due to β-adrenergic receptor blockade, should be further assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arini A, Gourves PY, Gonzalez P, Baudrimont M (2015) Metal detoxification and gene expression regulation after a Cd and Zn contamination: an experimental study on Danio rerio. Chemosphere 128:125–133

    Article  CAS  Google Scholar 

  • Ashton D, Hilton M, Thomas KV (2004) Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci Total Environ 333:167–184

    Article  CAS  Google Scholar 

  • Bartram AE, Winter MJ, Huggett DB, McCormack P, Constantine LA, Hetheridge MJ, Hutchinson TH, Kinter LB, Ericson JF, Sumpter JP, Owen SF (2012) In vivo and in vitro liver and gill EROD activity in rainbow trout (Oncorhynchus mykiss) exposed to the β-blocker propranolol. Environ Toxicol 27:573–582

    Article  CAS  Google Scholar 

  • Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA (2009) Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ Sci Technol 43:597–603

    Article  CAS  Google Scholar 

  • Bonnineau C, Guasch H, Proia L, Ricart M, Geiszinger A, Romani AM, Sabater S (2010) Fluvial biofilms: a pertinent tool to assess β-blockers toxicity. Aquat Toxicol 96:225–233

    Article  CAS  Google Scholar 

  • Bound JP, Voulvoulis N (2005) Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ Health Perspect 113:1705–1711

    Article  Google Scholar 

  • Contardo-Jara V, Pflugmacher S, Nutzmann G, Kloas W, Wiegand C (2010) The β-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha. Environ Pollut 158:2059–2066

    Article  CAS  Google Scholar 

  • Cruickshank JM, Neil-Dwyer G (1985) Beta-blocker brain concentrations in man. Eur J Clin Pharmacol 28:21–23

    Article  CAS  Google Scholar 

  • Daughton CG (2003) Cradle-to-cradle stewardship of drugs for minimizing their environmental disposition while promoting human health. I. Rationale for and avenues toward a green pharmacy. Environ Health Perspect 111:757–774

    Article  CAS  Google Scholar 

  • Dzialowski E, Turner P, Brooks B (2006) Physiological and reproductive effects of beta adrenergic receptor antagonists in Daphnia magna. Arch Environ Contam Toxicol 50:503–510

    Article  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159

    Article  CAS  Google Scholar 

  • Filby AL, Thorpe KL, Maack G, Tyler CR (2007) Gene expression profiles revealing the mechanisms of anti-androgen-and estrogen-induced feminization in fish. Aquat Toxicol 81:219–231

    Article  CAS  Google Scholar 

  • Franzellitti S, Buratti S, Valbonesi P, Capuzzo A, Fabbri E (2011) The β-blocker propranolol affects cAMP-dependent signaling and induces the stress response in Mediterranean mussels, Mytilus galloprovincialis. Aquat Toxicol 101:299–308

    Article  CAS  Google Scholar 

  • Fraysse B, Garric J (2005) Prediction and experimental validation of acute toxicity of β-blocks in Ceriodaphnia dubia. Environ Toxicol Chem 24:2470–2476

    Article  CAS  Google Scholar 

  • Fraysse B, Mons R, Garric J (2006) Development of a zebrafish 4-day toxicity of embryo-larval bioassay to assess chemicals. Ecotoxicol Environ Safe 63:253–267

    Article  CAS  Google Scholar 

  • Giltrow E, Eccles PD, Winter MJ, McCormack PJ, Rand-Weaver M, Hutchinson TH, Sumpter JP (2009) Chronic effects assessment and plasma concentrations of the β-blocker propranolol in fathead minnows (Pimephales promelas). Aquat Toxicol 95:195–202

    Article  CAS  Google Scholar 

  • Gomez MJ, Petrovic M, Fernandez-Alba AR, Barcelo D (2006) Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography-tandem mass spectrometry analysis in hospital effluent wastewaters. J Chromatogr A 1114:224–233

    Article  CAS  Google Scholar 

  • Gonzalez P, Dominique Y, Massabuau JC, Boudou A, Bourdineaud JP (2005) Comparative effects of dietary methylmercury on gene expression in liver, skeletal muscle, and brain of the zebrafish (Danio rerio). Environ Sci Technol 39:3972–3980

    Article  CAS  Google Scholar 

  • Gonzalez P, Baudrimont M, Boudou A, Bourdineaud JP (2006) Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). Biometals 19:225–235

    Article  CAS  Google Scholar 

  • Huggett DB, Brooks BW, Peterson B, Foran CM, Schlenk D (2002) Toxicity of select β adrenergic receptor-blocking pharmaceuticals (β-blockers) on aquatic organisms. Arch Environ Contam Toxicol 43:229–235

    Article  CAS  Google Scholar 

  • Huggett DB, Khan IA, Foran CM, Schlenk D (2003) Determination of β-adrenergic receptor blocking pharmaceuticals in united states wastewater effluent. Environ Pollut 121:199–205

    Article  CAS  Google Scholar 

  • Jin YX, Zhang XX, Shu LJ, Chen LF, Sun LW, Qian HF, Liu WP, Fu ZW (2010) Oxidative stress response and gene expression with atrazine exposure in adult female zebrafish (Danio rerio). Chemosphere 78:846–852

    Article  CAS  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999-2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  Google Scholar 

  • Liu J (2010) Stereoisomer analysis of β-adrenergic receptor blockers in wasterwater samples (in Chinese with English abstract). School of Pharmaceutical Science. Shanxi Medical University, Taiyuan

    Google Scholar 

  • Liu QT, Williams HE (2007) Kinetics and degradation products for direct photolysis of β-blockers in water. Environ Sci Technol 41:803–810

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Lorenzi V, Mehinto AC, Denslow ND, Schlenk D (2012) Effects of exposure to the β-blocker propranolol on the reproductive behavior and gene expression of the fathead minnow, Pimephales promelas. Aquat Toxicol 116–117:8–15

    Article  Google Scholar 

  • Massarsky A, Trudeau VL, Moon TW (2011) β-blockers as endocrine disruptors: the potential effects of human β-blockers on aquatic organisms. J Exp Zool A 315:251–265

    Article  CAS  Google Scholar 

  • Owen SF, Giltrow E, Huggett DB, Hutchinson TH, Saye J, Winter MJ, Sumpter JP (2007) Comparative physiology, pharmacology and toxicology of β-blockers: mammals versus fish. Aquat Toxicol 82:145–162

    Article  CAS  Google Scholar 

  • Owen SF, Huggett DB, Hutchinson TH, Hetheridge MJ, Kinter LB, Ericson JF, Sumpter JP (2009) Uptake of propranolol, a cardiovascular pharmaceutical, from water into fish plasma and its effects on growth and organ biometry. Aquat Toxicol 93:217–224

    Article  CAS  Google Scholar 

  • Santos LHMLM, Araujo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    Article  CAS  Google Scholar 

  • Sole M, Shaw JP, Frickers PE, Readman JW, Hutchinson TH (2010) Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Anal Bioanal Chem 396:649–656

    Article  CAS  Google Scholar 

  • Sun LW, Xin LH, Peng ZH, Jin R, Jin YX, Qian HF, Fu ZW (2014) Toxicity and enantiospecific differences of two β-blockers, propranolol and metoprolol, in the embryos and larvae of zebrafish (Danio rerio). Environ Toxicol 29:1367–1378

    Article  CAS  Google Scholar 

  • Triebskorn R, Casper H, Scheil V, Schwaiger J (2007) Ultrastructural effects of pharmaceuticals (carbamazepine, clofibric acid, metoprolol, diclofenac) in rainbow trout (Oncorhynchus mykiss) and common carp (Cyprinus carpio). Anal Bioanal Chem 387:1405–1416

    Article  CAS  Google Scholar 

  • Valavanidis A, Vlahogianni T, Dassenakis M, Scoullos M (2006) Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotox Environ Safe 64:178–189

    Article  CAS  Google Scholar 

  • Wang ZP, Nishimura Y, Shimada Y, Umemoto N, Hirano M, Zang LQ, Oka T, Sakamoto C, Kuroyanagi J, Tanaka T (2009) Zebrafish β-adrenergic receptor mRNA expression and control of pigmentation. Gene 446:18–27

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the National Natural Science Foundation of China (Nos. 21377118, 20907044), Program for Changjiang Scholars and Innovative Research Team in University (IRT13096), and Key Laboratory of Fishery Ecology and Environment, Guangdong Province (LFE-2013-2) for supporting this research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengwei Fu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, L., Liu, F., Chen, H. et al. Transcriptional Responses in Adult Zebrafish (Danio rerio) Exposed to Propranolol and Metoprolol. Ecotoxicology 24, 1352–1361 (2015). https://doi.org/10.1007/s10646-015-1510-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-015-1510-0

Keywords

Navigation