Skip to main content
Log in

Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

A wide range of pharmaceuticals and personal care products (PPCPs) are present in the environment, and many of their adverse effects are unknown. The environmental risk assessment of 26 PPCPs of relevant consumption and occurrence in the aquatic environment in Spain was accomplished in this research. Based on the ecotoxicity values obtained by bioluminescence and respirometry assays and by predictions using the US EPA ecological structure–activity relationship (ECOSAR™), the compounds were classified following the Globally Harmonized System of Classification and Labelling of Chemicals. According to the criteria of the European Medicines Agency, the real risk of impact of these compounds in wastewater treatment plants (WWTPs) and in the aquatic environment was predicted. In at least two ecotoxicity tests, 65.4 % of the PPCPs under study showed high toxicity or were harmful to aquatic organisms. The global order of the species’ sensitivity to the PPCPs considered was as follows: Vibrio fischeri (5 min) > Vibrio fischeri (15 min) > algae > crustaceans > fish > biomass of WWTP. Acetaminophen, ciprofloxacin, clarithromycin, clofibrate, ibuprofen, omeprazole, triclosan, parabens and 1,4-benzoquinone showed some type of risk for the aquatic environments and/or for the activated sludge of WWTPs. Development of acute and chronic ecotoxicity data, the determination of predicted and measured environmental concentrations of PPCPs, the inclusion of metabolites and transformation products and the evaluation of mixtures of these compounds will allow further improvements of the results of the ERAs and, finally, to efficiently identify the compounds that could affect the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

ASA:

Acetylsalicylic acid

B:

Bioaccumulation

EC50 :

Half maximal effective concentration

ECOSAR, US EPA:

Ecological structure–activity relationship

EMEA:

European medicines agency

EPA:

United States environmental protection agency

EPA EPI SuiteTM:

Estimation programs interface suite™ developed by the EPA’s Office of Pollution Prevention Toxics and Syracuse Research Corporation

ERA:

Environmental risk assessment

EU TGD:

European Union Technical Guidance Document

GHS:

Globally harmonized system of classification and labeling of chemicals

LC50:

Half maximal lethal concentration

MLSS:

Mixed liquor suspended solids

MRERA:

More restrictive ranking of environmental risk assessment

NOEC:

No observed effect concentration

P:

Persistence

PCPs :

Personal care products

PEC:

Predicted environmental concentration

PECSimple :

Simple predicted environmental concentration

PECR :

Refined predicted environmental concentration

PhAC:

Pharmaceutical active compound

PNEC:

Predicted no effect concentration

PPCPs:

Pharmaceutical and personal care products

(Q)SARs:

Quantitative structure–activity relationships

RQ:

Risk quotient

RQS:

Simple risk quotient

RQR :

Refined risk quotient

RQMEC :

Risk quotient calculated with MEC

RQWM :

Risk quotient in WWTPs without metabolization in humans

RQWWTPs :

Risk quotient in the influent of WWTPs considering metabolization in humans

SARs:

Structure activity relationships

T:

Toxicity

WWTP:

Wastewater treatment plant

References

  • Anca Caliman F, Gavrilescu M (2009) Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—a review. Clean 37(4–5):277–303. doi:10.1002/clen.200900038

    Google Scholar 

  • Andreottola G, Foladori P, Ziglio G, Cantaloni C, Bruni L, Cadonna M (2008) Methods for toxicity testing of xenobiotics in wastewater treatment plants and in receiving water bodies. In: Hlavinek P et al (eds) Dangerous pollutants (Xenobiotics) in urban water cycle NATO science for peace and security series. Springer, The Netherlands, pp 191–206

    Chapter  Google Scholar 

  • Andreozzi R, Caprio V, Ciniglia C, De Champdore M, Giudice R, Marotta R, Zuccato E (2004) Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ Sci Technol 38:6832–6838. doi:10.1021/es049509a

    Article  CAS  Google Scholar 

  • Bedner M, MacCrehan WA (2006) Transformation of acetaminophen by chlorination produces the toxicants 1,4-benzoquinone and N-acetyl-p-benzoquinone imine. Environ Sci Technol 40(2):516–522. doi:10.1021/es0509073

    Article  CAS  Google Scholar 

  • Besse JP, Garric J (2009) Progestagens for human use, exposure and hazard assessment for the aquatic environment. J Environ Pollut 157:3485–3494. doi:10.1016/j.envpol.2009.06.012

    Article  CAS  Google Scholar 

  • Bound JP, Voulvoulis N (2004) Pharmaceuticals in the aquatic environment—a comparison of risk assessment strategies. Chemosphere 56:1143–1155. doi:10.1016/j.chemosphere.2004.05.010

    Article  CAS  Google Scholar 

  • Brausch JM, Rand GM (2011) A review of personal care products in the aquatic environment: environmental concentrations and toxicity. Chemosphere 82:1518–1532. doi:10.1016/j.chemosphere.2010.11.018

    Article  CAS  Google Scholar 

  • Carlsson C, Johansson A, Alvan B, Bergman K, Kuhler T (2006) Are pharmaceuticals potent environmental pollutants? Part I: environmental risk assessments of selected active pharmaceutical ingredients. Sci Total Environ 364:67–87. doi:10.1016/j.scitotenv.2005.06.035

    Article  CAS  Google Scholar 

  • Claessens M, Vanhaecke L, Wille K, Janssen C (2013) Emerging contaminants in Belgian marine waters: single toxicant and mixture risks of pharmaceuticals. Mar Pollut Bull 71:45–50. doi:10.1016/j.marpolbul.2013.03.039

    Article  Google Scholar 

  • Cleuvers M (2004) Mixture toxicity of the anti-inflammatory drugs diclofenac, ibuprofen, naproxen, and acetylsalicylic acid. Ecotoxicol Environ Saf 59:309–315. doi:10.1016/S0147-6513(03)00141-6

    Article  CAS  Google Scholar 

  • Ebert I, Bachmann J, Kühnen U, Küster A, Kussatz C, Maletzki D, Schlüter C (2011) Toxicity of the fluoroquinolone antibiotics enrofloxacin and ciprofloxacin to photoautotrophic aquatic organisms. Environ Toxicol Chem 30(12):2786–2792. doi:10.1002/etc.678

    Article  CAS  Google Scholar 

  • EC (1996) Technical Guidance Documents in Support of the Commission Directive 93/667/EEC on risk assessment for new notified substances and the Commission regulation (EC) 1488/94 on Risk substances, European Chemical Bureau, Ispra, Italy, 19th April 1996, part 1, 2 and 3

  • EPA (2009) Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.00. United States Environmental Protection Agency, Washington, DC, USA

  • EPA (2012) Ecological effects test guidelines. OCSPP 850.3300: modified activated sludge, respiration. Inhibition test. http://www.regulations.gov/#!documentDetail;D=EPA-HQ-OPPT-2009-0154-0021. Accessed 23 Jan 2013

  • European Chemicals Bureau (2003) Technical Guidance Document in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances, Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market

  • European Medicines Agency (2006) Guideline on the environmental risk assessment of medicinal products for human use. Doc. Ref. EMEA/CHMP/SWP/4447/00 corr 1*. London.

  • Fatta-Kassinos D, Meric S, Nikolaou A (2011) Pharmaceutical residues in environmental waters and wastewater: current state of knowledge and future research. Anal Bioanal Chem 399:251–275. doi:10.1007/s00216-010-4300-9

    Article  CAS  Google Scholar 

  • Fent K, Weston AA, Caminada D (2006) Review ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi:10.1016/j.aquatox.2005.09.009

    Article  CAS  Google Scholar 

  • Ferrari B, Paxéus N, Giudice RL, Pollio A, Garric J (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370. doi:10.1016/S0147-6513(02)00082-9

    Article  CAS  Google Scholar 

  • Fulladosa E, Murat JC, Villaescusa I (2005) Effect of cadmium(II), chromium(VI), and arsenic(V) on long-term viability- and growth-inhibition assays using Vibrio fischeri marine bacteria. Arch Environ Contam Toxicol 49:299–306. doi:10.1007/s00244-004-0170-5

    Article  CAS  Google Scholar 

  • García-Galán MJ, Díaz-Cruz MS, Barceló D (2011) Occurrence of sulfonamide residues along the Ebro river basin Removal in wastewater treatment plants and environmental impact assessment. Environ Int 37:462–473. doi:10.1016/j.envint.2010.11.011

    Article  Google Scholar 

  • Ginebreda A, Muñoz I, de López Alda M, Brix R, López-Doval J, Barceló D (2010) Environmental risk assessment of pharmaceuticals in rivers: relationships between hazard indexes and aquatic macroinvertebrate diversity indexes in the Llobregat River (NE Spain). Environ Int 36:153–162. doi:10.1016/j.envint.2009.10.003

    Article  CAS  Google Scholar 

  • González-Mariño I, Quintana JB, Rodríguez I, Schrader S, Moeder M (2011) Fully automated determination of parabens, triclosan and methyl triclosan in wastewater by microextraction by packed sorbents and gas chromatography–mass spectrometry. Anal Chim Acta 684:59–66. doi:10.1016/j.aca.2010.10.049

    Article  Google Scholar 

  • Gros M, Petrović M, Ginebreda A, Barceló D (2010) Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environ Int 36:15–26. doi:10.1016/j.envint.2009.09.002

    Article  CAS  Google Scholar 

  • Grung M, Källqvist T, Sakshaug S, Skurtveit S, Thomas K (2008) Environmental assessment of Norwegian priority pharmaceuticals based on the EMEA guideline. Ecotoxicol Environ Saf 71:328–340. doi:10.1016/j.ecoenv.2007.10.015

    Article  CAS  Google Scholar 

  • Halling-Sorensen B, Nielsen SN, Lanzky PF, Ingerslev F, Lutzhoft HCH, Jorgensen SE (1998) Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36:357–394. doi:10.1016/S0045-6535(97)00354-8

    Article  CAS  Google Scholar 

  • Han GH, Hur HG, Kim SD (2006) Ecotoxicological risk of pharmaceuticals from wastewater treatment plants in Korea: occurrence and toxicity to Daphnia magna. Environ Toxicol Chem 25:265–271. doi:10.1897/05-193R.1

    Article  CAS  Google Scholar 

  • Hereber T (2002) Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: a review of recent research data. Toxicol Lett 131:5–17. doi:10.1016/S0378-4274(02)00041-3

    Article  Google Scholar 

  • Hernando MD, Mezcua M, Fernández-Alba AR, Barceló D (2006) Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 69:334–342. doi:10.1016/j.talanta.2005.09.037

    Article  CAS  Google Scholar 

  • Hernando MD, De Vettori S, Martínez Bueno MJ, Fernández-Alba AR (2007) Toxicity evaluation with Vibrio fischeri test of organic chemicals used in aquaculture. Chemosphere 68:724–730. doi:10.1016/j.chemosphere.2006.12.097

    Article  CAS  Google Scholar 

  • Isidori M, Lavorgna M, Nardelli A, Pascarella L, Parrella A (2005) Toxic and genotoxic evaluation of six antibiotics on non-target organisms. Sci Total Environ 346:87–98. doi:10.1016/j.scitotenv.2004.11.017

    Article  CAS  Google Scholar 

  • ISO (2007) Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)—Part 3: method using freeze-dried bacteria. ISO 11348–3:2007

    Google Scholar 

  • Kim Y, Choi K, Jung J, Park S, Kim P-G, Park J (2007) Aquatic toxicity of acetaminophen, carbamazepine, cimetidine, diltiazem and six major sulfonamides, and their potential ecological risks in Korea. Environ Int 33:275–370. doi:10.1016/j.envint.2006.11.017

    Article  Google Scholar 

  • Kim J-W, Ishibashi H, Yamauchi R, Ichikawa N, Takao Y, Hirano M, Koga M, Arizono K (2009) Acute toxicity of pharmaceutical and personal care products on freshwater crustacean (Thamnocephalus platyurus) and fish (Oryzias latipes). J Toxicol Sci 34:227–232. doi:10.2131/jts.34.227

    Article  CAS  Google Scholar 

  • Kosma CI, Lambropoulou DA, Albanis TA (2014) Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci Total Environ 466–467:421–438. doi:10.1016/j.scitotenv.2013.07.044

    Article  Google Scholar 

  • Kümmerer K (2009) The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. J Environ Manag 90:2354–2366. doi:10.1016/j.jenvman.2009.01.023

    Article  Google Scholar 

  • McClellan K, Halden R (2010) Pharmaceuticals and personal care products in archived U.S. biosolids from the 2001 EPA national sewage sludge survey. Water Res 44:658–668. doi:10.1016/j.watres.2009.12.032

    Article  CAS  Google Scholar 

  • Milton DL (2006) Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol 296:61–71. doi:10.1016/j.ijmm.2006.01.044

    Article  CAS  Google Scholar 

  • Nikolaou A, Meric S, Fatta D (2007) Occurrence patterns of pharmaceuticals in water and wastewater environments. Anal Bioanal Chem 387:1225–1234. doi:10.1007/s00216-006-1035-8

    Article  CAS  Google Scholar 

  • Ortiz de García S, Pinto Pinto G, García Encina P, Irusta mata R (2013a) Consumption and occurrence of pharmaceutical and personal care products in the aquatic environment in Spain. Sci Total Environ 444:451–465. doi:10.1016/j.scitotenv.2012.11.057

    Article  Google Scholar 

  • Ortiz de García S, Pinto GP, García-Encina PA, Irusta RI (2013b) Ranking of concern, based on environmental indexes, for pharmaceutical and personal care products: an application to the Spanish case. J Environ Manag 129:384–397. doi:10.1016/j.jenvman.2013.06.035

    Article  Google Scholar 

  • Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicol 17:526–538. doi:10.1007/s10646-008-0209-x

    Article  CAS  Google Scholar 

  • Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268. doi:10.1016/j.envint.2005.08.022

    Article  CAS  Google Scholar 

  • Pothitou P, Voutsa D (2008) Endocrine disrupting compounds in municipal and industrial wastewater treatment plants in Northern Greece. Chemosphere 73:1716–1723. doi:10.1016/j.chemosphere.2008.09.037

    Article  CAS  Google Scholar 

  • Pounds N, MaClean S, Webley M, Pascoe D, Hutchinson T (2008) Acute and chronic effects of ibuprofen in the mollusc Planorbis carinatus (Gastropoda: Planorbidae). Ecotoxicol Environ Saf 70:47–52. doi:10.1016/j.ecoenv.2007.07.003

    Article  CAS  Google Scholar 

  • Radix P, Léonard A, Papantoniou C, Roman G, Saouter E, Galloti-Schmitt S, Thiébaud H, Vasseur P (2000) Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol Environ Saf 47:186–194. doi:10.1006/eesa.2000.1966

    Article  CAS  Google Scholar 

  • Raldúa D, André M, Babin P (2008) Clofibrate and gemfibrozil induce an embryonic malabsorption syndrome in zebrafish. Toxicol Appl Pharmacol 228:301–314. doi:10.1016/j.taap.2007.11.016

    Article  Google Scholar 

  • Ren S (2004) Assessing wastewater toxicity to activated sludge: recent research and developments. Environ Int 30(8):1151–1164. doi:10.1016/j.envint.2004.06.003

    Article  CAS  Google Scholar 

  • Rosal R, Rodríguez A, Perdigón-Melón JA, Petre A, García-Calvo E, Gómez MJ, Agüera A, Fernández-Alba AR (2010a) Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation. Water Res 44:578–588. doi:10.1016/j.watres.2009.07.004

    Article  CAS  Google Scholar 

  • Rosal R, Rodea-Palomares I, Boltes K, Fernández-Piñas F, Leganés F, Gonzalo S, Petre A (2010b) Ecotoxicity assessment of lipid regulators in water and biologically treated wastewater using three aquatic organisms. Environ Sci Pollut Res 17:135–144. doi:10.1007/s11356-009-0137-1

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Wilson CJ, Brain RA, Solomon KR (2003) Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol Lett 144:383–395. doi:10.1016/S0378-4274(03)00257-1

    Article  CAS  Google Scholar 

  • Sanderson H, Brain RA, Johnson DJ, Wilson CJ, Solomon KR (2004a) Toxicity classification and evaluation of four pharmaceuticals classes: antibiotics, antineoplastics, cardiovascular, and sex hormones. Toxicol 203:27–40. doi:10.1016/j.tox.2004.05.015

    Article  CAS  Google Scholar 

  • Sanderson H, Johnson DJ, Reitsma T, Brain RA, Wilson CJ, Solomon KR (2004b) Ranking and prioritization of environmental risks of pharmaceuticals in surface waters. Regul Toxicol Pharmacol 39:158–183. doi:10.1016/j.yrtph.2003.12.006

    Article  CAS  Google Scholar 

  • Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MC (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mat 175:45–95. doi:10.1016/j.jhazmat.2009.10.100

    Article  CAS  Google Scholar 

  • Santos LHMLM, Gros M, Rodriguez-Mozaz S, Delerue-Matos C, Pena A, Barceló D, Montenegro MCBSM (2013) Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: identification of ecologically relevant pharmaceuticals. Sci Total Environ 461–462:302–316. doi:10.1016/j.scitotenv.2013.04.077

    Article  Google Scholar 

  • Tauxe-Wuersch A, De Alencastro LF, Grandjean D, Tarradellas J (2005) Occurrence of several acidic drugs in sewage treatment plants in Switzerland and risk assessment. Water Res 39:1761–1772. doi:10.1016/j.watres.2005.03.003

    Article  CAS  Google Scholar 

  • Teijon G, Candela L, Tamoh K, Molina-Díaz A, Fernández-Alba AR (2010) Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain). Sci Total Environ 408:3584–3595. doi:10.1016/j.scitotenv.2010.04.041

    Article  CAS  Google Scholar 

  • Terasaki M, Makino M, Tatarazako N (2009) Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays. J Appl Toxicol 29:242–247. doi:10.1002/jat.1402

    Article  CAS  Google Scholar 

  • Ternes TA (1998) Occurrence of drugs in German sewage treatment plants and rivers. Water Res 32:3245–3260. doi:10.1016/S0043-1354(98)00099-2

    Article  CAS  Google Scholar 

  • United Nations (2011) Globally harmonized system of classification and labelling of chemicals (GHS), 4th edn. United Nations Publications, New York

    Google Scholar 

  • Valcárcel Y, González Alonso S, Rodríguez-Gil JL, Romo Maroto R, Gil A, Catalá M (2011) Analysis of the presence of cardiovascular and analgesic/anti-inflammatory/antipyretic pharmaceuticals in river- and drinking-water of the Madrid Region in Spain. Chemosphere 82:1062–1071. doi:10.1016/j.chemosphere.2010.10.041

    Article  Google Scholar 

  • Villaverde-de-Sáa E, González-Mariño I, Quintana JB, Rodil R, Rodríguez I, Cela R (2010) In-sample acetylation-non-porous membrane-assisted liquid–liquid extraction for the determination of parabens and triclosan in water samples. Anal Bioanal Chem 397:2559–2568. doi:10.1007/s00216-010-3789-2

    Article  Google Scholar 

  • Woldegiorgis A, Wiklund P, Moe M (2009) Retrospective environmental risk assessment of human pharmaceuticals in the Nordic countries 1997–2007. Nordic Council of Ministers, Copenhagen. ISBN 978-92-893-1954-6

  • Xagoraraki I, Hullman R, Song W, Li H, Voice T (2008) Effect of pH on degradation of acetaminophen and production of 1,4-benzoquinone in water chlorination. J Water Supply Res Technol AQU. 57(6):381–390. doi:10.2166/aqua.2008.095

    Article  CAS  Google Scholar 

  • Yamamoto H, Nakamura Y, Nakamura Y, Kitani C, Imari T, Sekizawa J et al (2007) Initial ecological risk assessment of eight selected human pharmaceuticals in Japan. Environ Sci 14(4):177–193

    CAS  Google Scholar 

  • Yamashita N, Yasojima M, Miyajima K, Suzuki Y, Tanaka H (2006) Effects of antibacterial agents, levofloxacin and clarithromycin, on aquatic organisms. Water Sci Technol 53(11):65–72. doi:10.2166/wst.2006.338

    Article  CAS  Google Scholar 

  • Zerdazi R, Boutraa M, Melizi A, Bencheikh lehocine M (2012) Application of respirometry in the assessment of chromium contaminated waste waters treatment. Energy Proc 18:438–448. doi:10.1016/j.egypro.2012.05.055

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the MAPFRE Foundation of Spain (No. MA/11/AYU/138) and the scholarship grants of the Carabobo University of Venezuela (No. CD-3417 and No. CD-2155).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheyla Andrea Ortiz de García.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz de García, S.A., Pinto Pinto, G., García-Encina, P.A. et al. Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants. Ecotoxicology 23, 1517–1533 (2014). https://doi.org/10.1007/s10646-014-1293-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-014-1293-8

Keywords

Navigation