Skip to main content
Log in

In-sample acetylation-non-porous membrane-assisted liquid–liquid extraction for the determination of parabens and triclosan in water samples

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A procedure for the determination of seven parabens (esters of 4-hydroxybenzoic acid), including the distinction between branched and linear isomers of propyl- and butyl-parabens and triclosan in water samples, was developed and evaluated. The procedure includes in-sample acetylation-non-porous membrane-assisted liquid–liquid extraction and large volume injection–gas chromatography–ion trap–tandem mass spectrometry. Different derivatisation strategies were considered, i.e. post-extraction silylation with N-methyl-N-(tert-butyldimethylsilyl)-trifluoroacetamide and in situ acylation with acetic anhydride (Ac2O) and isobutylchloroformate. Moreover, acceptor solvent and the basic catalyser of the acylation reaction were investigated. Thus, in situ derivatisation with Ac2O and potassium hydrogenphosphate (as basic catalyser) was selected. Potassium hydrogenphosphate overcomes some drawbacks of other basic catalysers, e.g. toxicity and bubble formation, while leads to higher responses. Subsequently, other experimental variables affecting derivatisation–extraction yield such as pre-stirring time, salt addition and volume of Ac2O were optimised by an experimental design approach. Under optimised conditions, the proposed method achieved detection limits from 0.1 to 1.4 ng L−1 for a sample volume of 18 mL and extraction efficiencies, estimated by comparison with liquid–liquid extraction, between 46% (for methyl- and ethyl-parabens) and 110% (for benzylparaben). The reported sample preparation approach is free of matrix effects for parabens but affected for triclosan with a reduction of ≈ 40% when wastewater samples are analysed; therefore, both internal and external calibration can be used as quantification techniques for parabens, but internal standard calibration is mandatory for triclosan. The application of the method to real samples revealed the presence of these compounds in raw wastewater at concentrations up to 26 ng mL−1, the prevalence of the linear isomer of propylparaben (n-PrP), and the coexistence of the two isomers of butylparaben (i-BuP and n-BuP) at similar levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Official Journal of the European Communities, OJ L 262, 27.9.1976, p. 169, 1976

  2. Peck AM (2006) Anal Bioanal Chem 386:907–939

    Article  CAS  Google Scholar 

  3. Crofton KM, Paul KB, De Vito MJ, Hedge JM (2007) Environ Toxicol Pharmacol 24:194–197

    Article  CAS  Google Scholar 

  4. Silva E, Rajapakse N, Kortenkamp A (2002) Environ Sci Technol 36:1751–1756

    Article  CAS  Google Scholar 

  5. Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS (2004) J Appl Toxicol 24:5–13

    Article  CAS  Google Scholar 

  6. Canosa P, Morales S, Rodríguez I, Rubí E, Cela R, Gómez M (2005) Anal Bioanal Chem 383:1119–1126

    Article  CAS  Google Scholar 

  7. Lores M, Llompart M, Sánchez-Prado L, García-Jares C, Cela R (2005) Anal Bioanal Chem 381:1294–1298

    Article  CAS  Google Scholar 

  8. Orvos DR, Versteeg DJ, Inauen J, Capdevielle M, Rothenstein A, Cunningham V (2002) Environ Toxicol Chem 21:1338–1349

    Article  CAS  Google Scholar 

  9. Canosa P, Rodríguez I, Rubí E, Bollaín MH, Cela R (2006) J Chromatogr A 1124:3–10

    Article  CAS  Google Scholar 

  10. Lee HB, Peart TE, Svoboda ML (2005) J Chromatogr A 1094:122–129

    Article  CAS  Google Scholar 

  11. Singer H, Müller S, Tixier C, Pillonel L (2002) Environ Sci Technol 36:4998–5004

    Article  CAS  Google Scholar 

  12. Canosa P, Rodríguez I, Rubí E, Cela R (2005) J Chromatogr A 1072:107–115

    Article  CAS  Google Scholar 

  13. González-Mariño I, Quintana JB, Rodríguez I, Cela R (2009) Rapid Commun Mass Spectrom 23:1756–1766

    Article  Google Scholar 

  14. Regueiro J, Becerril E, García-Jares C, Llompart M (2009) J Chromatogr A 1216:4693–4702

    Article  CAS  Google Scholar 

  15. Kasprzyk-Hordern B, Dinsdale RM, Guwy AJ (2008) Water Res 42:3498–3518

    Article  CAS  Google Scholar 

  16. Benijts T, Lambert W, De Leenheer A (2004) Anal Chem 76:704–711

    Article  CAS  Google Scholar 

  17. Pedrouzo M, Borrull F, Marcé RM, Pocurull E (2009) J Chromatogr A 1216:6994–7000

    Article  CAS  Google Scholar 

  18. Saraji M, Mirmahdieh S (2009) J Sep Sci 32:988–995

    Article  CAS  Google Scholar 

  19. Regueiro J, Llompart M, Psillakis E, García-Monteagudo JC, García-Jares C (2009) Talanta 79:1387–1397

    Article  CAS  Google Scholar 

  20. Montes R, Rodríguez I, Rubí E, Cela R (2009) J Chromatogr A 1216:205–210

    Article  CAS  Google Scholar 

  21. Moeder M, Lange F (2007) LC-GC Eur 20:97–103

    CAS  Google Scholar 

  22. Rodil R, Schrader S, Moeder M (2009) J Chromatogr A 1216:4887–4894

    Article  CAS  Google Scholar 

  23. Wells RJ (1999) J Chromatogr A 843:1–18

    Article  CAS  Google Scholar 

  24. Llompart M, Lourido M, Landín P, García-Jares C, Cela R (2002) J Chromatogr A 963:137–148

    Article  CAS  Google Scholar 

  25. Henriksen T, Svensmark B, Lindhardt B, Juhler RK (2001) Chemosphere 44:1531–1539

    Article  CAS  Google Scholar 

  26. Rodríguez I, Llompart MP, Cela R (2000) J Chromatogr A 885:291–304

    Article  Google Scholar 

  27. Einsle T, Paschke H, Bruns K, Schrader S, Popp P, Moeder M (2006) J Chromatogr A 1124:196–204

    Article  CAS  Google Scholar 

  28. Hauser B, Popp P, Kleine-Benne E (2002) J Chromatogr A 963:27–36

    Article  CAS  Google Scholar 

  29. Quintana JB, Reemtsma T (2006) J Chromatogr A 1124:22–28

    Article  CAS  Google Scholar 

  30. Quintana JB, Rodil R, López-Mahía P, Muniategui-Lorenzo S, Prada-Rodríguez D (2007) Anal Bioanal Chem 388:1283–1293

    Article  CAS  Google Scholar 

  31. Pizarro C, González-Saiz JM, Pérez-Del-Notario N (2006) J Chromatogr A 1132:8–14

    Article  CAS  Google Scholar 

  32. Lewis GA, Mathieu D, Phan-Tan-Luu R (1999) Pharmaceutical experimental design in drugs. Marcel Dekker, New York

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Spanish Ministry of Science and Innovation (Ministerio de Ciencia e Innovación) and FEDER funds: project no. CTQ2009-08377 and “Acciones Integradas” DE2009-0020. RR and JBQ extend their gratitude to the Spanish Ministry of Science and Innovation (Ramón y Cajal research program). IGM acknowledges the Spanish Ministry of Education (Ministerio de Educación) for her FPU grant. Finally, we are indebted to Aquagest for kindly providing access to wastewater samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosario Rodil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Villaverde-de-Sáa, E., González-Mariño, I., Quintana, J.B. et al. In-sample acetylation-non-porous membrane-assisted liquid–liquid extraction for the determination of parabens and triclosan in water samples. Anal Bioanal Chem 397, 2559–2568 (2010). https://doi.org/10.1007/s00216-010-3789-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-010-3789-2

Keywords

Navigation