Skip to main content
Log in

Taking One for the Team: Is Collective Action More Responsive to Ecological Change?

  • Published:
Environmental and Resource Economics Aims and scope Submit manuscript

Abstract

Debate persists around the timing of risk reduction strategies for large-scale ecological change for three reasons: risks are difficult to predict, they involve irreversibilities, and they impact multiple jurisdictions. The combination of these three factors creates a general class of filterable spatial-dynamic externalities (FSDE) in which one person’s risk reduction investments reduce or filter undesirable events experienced by others and underestimates the option value placed on being able to respond to new information about the consequences of ecological change. By focusing on the optimal intervention decision, we illustrate how and when the opposing forces created by an FSDE will lead to a divergence in private and collective risk reduction strategies. We use bioinvasions as our motivating example. The bioinvasion first hits one jurisdiction, and that jurisdiction’s risk reduction investment reduces the risk faced by all other jurisdiction. We find that efforts to internalize the full benefits of risk reduction investments may have unintended consequences on the responsiveness of environmental policy. There is a social welfare gain from asking the first jurisdiction to delay a risk reduction investment to internalize the option values of all at-risk jurisdictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For instance, a filterable extenality will arise when efforts to control pests or invasive species by an indivudal provide partial control to neighbors (Brown et al. 2002) or delays the time a spatially distant individual becomes invaded (Wilen 2007). Baumol and Oates (1975) frame the problem as a distinction between depletable and undepletable externalities. Bird (1987) further defined the spatial consequences by pointing out the more relevant distinction is between transferable and nontransferable externalities.

  2. The focus on downside risk in our model is an environmental analog of Bernanke’s “bad news principle” (Bernanke 1983) and arises due to the combination of uncertainty in the benefits of a risk reduction strategy and the irreversible investment needed to initiate the risk reduction strategy. A focus on downside risk may also arise if returns are nonnormally distributed and decision makers are particularly averse to deviations below a benchmark return (Shah and Ando 2015).

  3. Our use of the term option value is consistent with the Dixit–Pindyck definition. There are subtle differences between the Dixit–Pindyck notion of option value and the Arrow–Fisher–Hanneman definition of option value (Mensink and Requate 2005)

  4. Little guidance exists on information externalities and investments in response to large-scale ecological change. The most related literature is the Industrial Organization research that explores capital investments and market entry by private firms. This work suggests the lack of a coordinated response creates scale economies, knowledge spillovers, and learning externalities that delay private investments longer than socially optimal (Rob 1991; Caplin and Leahy 1993; Dixit 1995; Décamps and Mariotti 2004). The investment itself provides information. Our structural model, however, differs significantly from this work. Investments in response to ecological change differ fundamentally from the IO model because now information is provided by postponing the investment.

  5. Socially optimal investment decisions have been considered for environmental pollutants (Pindyck 2000, 2002; Saphores 2004), biodiversity loss (Kolstad 1996), agricultural pest species (Saphores 2000), and invasive species (Saphores and Shogren 2005; Marten and Moore 2011). Sims and Finnoff (2012) introduce spatial considerations for a generic environmental problem.

  6. See Lodge (2001) and Mack et al. (2000). Impacts to agricultural production are demonstrated in Archer and Shogren (1996), Feder and Regev (1975), and Lichtenberg and Zilberman (1986). Effects on renewable resource markets are given in Knowler and Barbier (2000), and ecosystem services in Rothlisberger et al. (2009).

  7. For optimal control of a damaging species spreading in two dimensions see Epanchin-Niell and Wilen (2012) and Aadland et al. (2015).

  8. For some bioinvasions, the current extent of the invasion is unknown and investments to control the spread must be made in conjunction with investments in detection (Mehta et al. 2007; Homans and Horie 2011).

  9. Equation (1) implies future invaded area is a log-normally distributed random variable with expected value \(A_0 e^{r^{0}t}\) and variance \(A_0^2 e^{2r^{0}t}\left( {e^{s^{2}t}-1} \right) \).

  10. A lower absorbing barrier on the stochastic process could be included to allow for species extinction. In aspatial models that focus on the size of the invasive species population, a natural choice is to set an extinction threshold where the population equals 1 to reflect the quasi-extinction threshold for sexually reproducing populations (Ginzburg et al. 1982; Engen and Saether 2000). General thresholds that trigger extinction are less obvious when the state variable is invaded so we assume the invader is permanently established.

  11. For instance, invasive species spread increases exponentially in the presence of long-distance, human-mediated dispersal (Shigesada et al. 1995). Long-distance dispersal is the rule rather than the exception for invasive species (Hengeveld 1989).

  12. Investments in adaptation can also be accommodated in this framework by assuming \(\gamma \) and/or \(\theta \) can be lowered.

  13. Our cost function is consistent with control strategies that do not depend on the current size of the invaded area such as trade restrictions, information campaigns, or biocontrol. It is less applicable for control strategies such as spraying and physical removal that are focused on the current invaded area.

  14. In the dynamic programming approach we employ, the discount rate is exogenously determined and should equal the rate of return that could be earned on other investment opportunities with comparable risk characteristics. Agents should only use the risk-free rate if bioinvasion risk is unrelated to what happens in the overall economy (i.e., it is fully diversifiable). If bioinvasion risks cannot be traded in markets, the discount rate can simply reflect the agent’s subjective valuation of risk. See Chapter 4 in Dixit and Pindyck (1994) for details.

  15. This provides a consistent comparison to the privately optimal case in which N mitigation investments will also be made. Note that this mitigation strategy will differ from the case where a social planner makes 1 mitigation investment while ignoring property boundaries.

  16. Equation (6) assumes \({\bar{D}} _1 \) is an upper absorbing barrier which implies damage is permanent. With the upper bound on damage the traditional assumption \(\rho >\alpha ^{0}\) is not needed to ensure finite expected damage. As a result \(\varepsilon ^{0} \lessgtr 0.\) For details see Sims and Finnoff (2012). If damage is temporary it may be more realistic to assume a barrier which reflects the process to 0. For more information on expected values with barriers see Dixit (1993).

  17. The solution to (8) must also ensure option value is negative \((\eta <0)\). See the “Appendix” for derivation.

  18. The solution to (11) must also ensure option value is negative \((\eta <0)\). See the “Appendix” for derivation.

  19. This result does not imply that the uncertainty associated with mitigation on other parcels has been reduced. The same stochastic process dictates ecological change in each jurisdiction.

  20. With an upper bound on damage, the traditional assumption \(\rho >\alpha ^{0}\) is not needed to ensure finite expected damage. As a result, \(\varepsilon ^{0}\lessgtr 1.\)

  21. In comparison, a decision maker that internalized the FSDE would mitigate in 3.38 years if spread were deterministic. Thus, a 2% variability in spread leads to an expected delay in mitigation of over 11 years.

  22. See the “Appendix” for derivation.

References

  • Aadland D, Sims C, Finnoff D (2015) Spatial dynamics of optimal management in bioeconomic systems. Comput Econ 45(4):545–577

    Article  Google Scholar 

  • Altieri AH, van Wesenbeeck BK, Bertness MD, Silliman BR (2010) Facilitation cascade drives positive relationship between native biodiversity and invasion success. Ecology 91(5):1269–1275

    Article  Google Scholar 

  • Archer DW, Shogren JF (1996) Endogenous risk in weed control management. Agric Econ 14(2):103–122

    Article  Google Scholar 

  • Arrow KJ, Fisher AC (1974) Environmental preservation, uncertainty, and irreversibility. Q J Econ 88(2):312–319

    Article  Google Scholar 

  • Asano T (2010) Precautionary principle and the optimal timing of environmental policy under ambiguity. Environ Resour Econ 47(2):173–196

    Article  Google Scholar 

  • Athanassoglou S, Xepapadeas A (2012) Pollution control with uncertain stock dynamics: when, and how, to be precautious. J Environ Econ Manag 63(3):304–320

    Article  Google Scholar 

  • Baumol WJ, Oates WE (1975) The theory of environmental policy. Cambridge University Press, New York

    Google Scholar 

  • Bernanke BS (1983) Irreversibility, uncertainty, and cyclical investment. Q J Econ 98(1):85–106

    Article  Google Scholar 

  • Bird PJWN (1987) The transferability and depletability of externalities. J Environ Econ Manag 14(1):54–57

    Article  Google Scholar 

  • Boucher V, Bramoullé Y (2010) Providing global public goods under uncertainty. J Public Econ 94(9):591–603

    Article  Google Scholar 

  • Brown C, Lynch L, Zilberman D (2002) The economics of controlling insect-transmitted plant diseases. Am J Agric Econ 84(2):279–291

    Article  Google Scholar 

  • Caplin A, Leahy J (1993) Sectoral shocks, learning, and aggregate fluctuations. Rev Econ Stud 60(4):777–794

    Article  Google Scholar 

  • Chichilnisky G, Heal G (1993) Global environmental risks. J Econ perspect 7(4):65–86

    Article  Google Scholar 

  • Choi JP (1994) Irreversible choice of uncertain technologies with network externalities. RAND J Econ 25:382–401

    Article  Google Scholar 

  • Conrad JM (1980) Quasi-option value and the expected value of information. Q J Econ 94(4):813–820

    Article  Google Scholar 

  • Dahlsten DL, Lorraine H (1989) Eradication as a pest management tool: concepts and context. In: Dahlsten DL, Garcia R (eds) Eradication of exotic pests. Yale University Press, New Haven, pp 3–15

    Google Scholar 

  • Davis MA, Chew MK, Hobbs RJ, Lugo AE, Ewel JJ, Vermeij GJ, Brown JH, Rosenzweig ML, Gardener MR, Carroll SP, Thompson K, Pickett STA, Stromberg JC, Tredici PD, Suding KN, Ehrenfeld JG, Philip Grime J, Mascaro J, Briggs JC (2011) Don’t judge species on their origins. Nature 474(7350):153–154

    Article  Google Scholar 

  • Décamps J-P, Mariotti T (2004) Investment timing and learning externalities. J Econ Theory 118(1):80–102

    Article  Google Scholar 

  • Didham RK, Tylianakis JM, Hutchison MA, Ewers RM, Gemmell NJ (2005) Are invasive species the drivers of ecological change? Trends Ecology Evol 20(9):470–474

    Article  Google Scholar 

  • Dixit A (1993) The art of smooth pasting, fundamentals of pure and applied economics. Harwood Academic Publishers, Switzerland 55

    Google Scholar 

  • Dixit A (1995) Irreversible investment with uncertainty and scale economies. J Econ Dyn Control 19(1–2):327–350

    Article  Google Scholar 

  • Dixit AK, Pindyck RS (1994) Investment under uncertainty. Princeton University Press, Princeton

    Google Scholar 

  • Engen S, Saether B-E (2000) Predicting the time to quasi-extinction for populations far below their carrying capacity. J Theor Biol 205(4):649–658

    Article  Google Scholar 

  • Epanchin-Niell RS, Wilen JE (2012) Optimal spatial control of biological invasions. J Environ Econ Manag 63(2):260–270

    Article  Google Scholar 

  • Farrow S (2004) Using risk assessment, benefit-cost analysis, and real options to implement a precautionary principle. Risk Anal 24(3):727–735

    Article  Google Scholar 

  • Feder G, Regev U (1975) Biological interactions and environmental effects in the economics of pest control. J Environ Econ Manag 2(2):75–91

    Article  Google Scholar 

  • Fenichel EP, Tsao JI, Jones ML, Hickling GJ (2008) Real options for precautionary fisheries management. Fish Fish 9(2):121–137

    Article  Google Scholar 

  • Fenichel EP, Richards TJ, Shanafelt DW (2014) The control of invasive species on private property with neighbor-to-neighbor spillovers. Environ Resour Econ 59(2):231–255

    Article  Google Scholar 

  • Finus M, Pintassilgo P (2013) The role of uncertainty and learning for the success of international climate agreements. J Public Econ 103:29–43

    Article  Google Scholar 

  • Fisher AC, Hanemann W (1993) Assessing climate change risks: valuation of effects. Assessing surprises and nonlinearities in greenhouse warming. In: Proceedings of an Interdisciplinary Workshop. Washington, DC

  • Ginzburg LR, Slobodkin LB, Johnson K, Bindman AG (1982) Quasiextinction probabilities as a measure of impact on population growth. Risk Anal 2(3):171–181

    Article  Google Scholar 

  • Gollier C, Jullien B, Treich N (2000) Scientific progress and irreversibility: an economic interpretation of the ‘precautionary principle’. J Public Econ 75(2):229–253

    Article  Google Scholar 

  • Hanemann WM (1989) Information and the concept of option value. J Environ Econ Manag 16:23–37

    Article  Google Scholar 

  • Hengeveld R (1989) Dynamics of biological invasions. Chapman and Hall, London

    Google Scholar 

  • Henry C (1974) Investment decisions under uncertainty: the “irreversibility effect”. Am Econ Rev 64(6):1006–1012

    Google Scholar 

  • Homans F, Horie T (2011) Optimal detection strategies for an established invasive pest. Ecol Econ 70(6):1129–1138

    Article  Google Scholar 

  • Knowler D, Barbier EB (2000) The economics of an invading species: a theoretical model and case study application. In: Perrings C, Williamson M, Dalmazzone S (eds) The economics of biological invasions. Edward Elgar Publishing, Cheltenham, pp 70–93

    Google Scholar 

  • Kolstad C, Ulph A (2008) Learning and international environmental agreements. Clim Change 89(1–2):125–141

    Article  Google Scholar 

  • Kolstad CD (1996) Fundamental irreversibilities in stock externalities. J Public Econ 60(2):221–233

    Article  Google Scholar 

  • Kolstad CD (2007) Systematic uncertainty in self-enforcing international environmental agreements. J Environ Econ Manag 53(1):68–79

    Article  Google Scholar 

  • Kolstad CD, Ulph A (2011) Uncertainty, learning and heterogeneity in international environmental agreements. Environ Resour Econ 50(3):389–403

    Article  Google Scholar 

  • Kovacs KF, Haight RG, Mercader RJ, McCullough DG (2014) A bioeconomic analysis of an emerald ash borer invasion of an urban forest with multiple jurisdictions. Resour Energy Econ 36(1):270–289

    Article  Google Scholar 

  • Lichtenberg E, Zilberman D (1986) The econometrics of damage control: why specification matters. Am J Agric Econ 68(2):261–273

    Article  Google Scholar 

  • Lodge D (2001) Responses of lake biodiversity to global changes. In: Chapin FS III, Sala OE, Huber-Sannwald E (eds) Future scenarios of biodiversity. Springer, New York, pp 277–312

    Google Scholar 

  • Mack RN, Simberloff D, Mark Lonsdale W, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10(3):689–710

    Article  Google Scholar 

  • Marten AL, Moore CC (2011) An options based bioeconomic model for biological and chemical control of invasive species. Ecol Econ 70(11):2050–2061

    Article  Google Scholar 

  • Mehta SV, Haight RG, Homans FR, Polasky S, Venette RC (2007) Optimal detection and control strategies for invasive species management. Ecol Econ 61(2–3):237–245

    Article  Google Scholar 

  • Mensink P, Requate T (2005) The Dixit–Pindyck and the Arrow–Fisher–Hanemann–Henry option values are not equivalent: a note on Fisher (2000). Resour Energy Econ 27(1):83–88

    Article  Google Scholar 

  • Perrings C, Williamson M, Barbier EB, Delfino D, Dalmazzone S, Shogren J, Simmons P, Watkinson A (2002) Biological invasion risks and the public good: an economic perspective. Conserv Ecol 6(1):1

    Article  Google Scholar 

  • Pindyck RS (2000) Irreversibilities and the timing of environmental policy. Resour Energy Econ 22(3):233–259

    Article  Google Scholar 

  • Pindyck RS (2002) Optimal timing problems in environmental economics. J Econ Dyn Control 26(9–10):1677–1697

    Article  Google Scholar 

  • Pindyck RS (2007) Uncertainty in environmental economics. Rev Environ Econ Policy 1(1):45–65

    Article  Google Scholar 

  • Richards TJ, Ellsworth P, Tronstad R, Naranjo S (2010) Market-based instruments for the optimal control of invasive insect species: B. Tabaci in Arizona. J Agric Resour Econ 35:349–367

    Google Scholar 

  • Rob R (1991) Learning and capacity expansion under demand uncertainty. Rev Econ Stud 58(4):655–675

    Article  Google Scholar 

  • Rothlisberger JD, Lodge DM, Cooke RM, Finnoff DC (2009) Future declines of the binational Laurentian Great Lakes fisheries: the importance of environmental and cultural change. Front Ecol Environ 8(5):239–244

    Article  Google Scholar 

  • Saphores J-DM (2000) The economic threshold with a stochastic pest population: a real options approach. Am J Agric Econ 82(3):541–555

    Article  Google Scholar 

  • Saphores J-DM, Shogren JF (2005) Managing exotic pests under uncertainty: optimal control actions and bioeconomic investigations. Ecol Econ 52(3):327–339

    Article  Google Scholar 

  • Saphores JD (2004) Environmental uncertainty and the timing of environmental policy. Nat Resour Model 17(2):163–190

    Article  Google Scholar 

  • Shah P, Ando AW (2015) Downside versus symmetric measures of uncertainty in natural resource portfolio design to manage climate change uncertainty. Land Econ 91(4):664–687

    Article  Google Scholar 

  • Shigesada N, Kawasaki K, Takeda Y (1995) Modeling stratified diffusion in biological invasions. Am Nat 146(2):229–251

    Article  Google Scholar 

  • Shogren JF, Crocker TD (1991) Cooperative and noncooperative protection against transferable and filterable externalities. Environ Resour Econ 1(2):195–214

    Article  Google Scholar 

  • Simberloff D (2011) Non-natives: 141 scientists object. Nature 475(7354):36–36

    Article  Google Scholar 

  • Sims C, Finnoff D (2012) The role of spatial scale in the timing of uncertain environmental policy. J Econ Dyn Control 36:369–382

    Article  Google Scholar 

  • Sims C, Finnoff D (2013) When is a “wait and see” approach to invasive species justified? Resour Energy Econ 35:235–255

  • Sims C, Finnoff D, Shogren JF (2016) Bioeconomics of invasive species: using real options theory to integrate ecology, economics, and risk management. Food Secur 8:1–10

    Article  Google Scholar 

  • Smith CS, Lonsdale WM, Fortune J (1999) When to ignore advice: invasion predictions and decision theory. Biol Invasions 1(1):89–96

    Article  Google Scholar 

  • Stromberg JC, Chew MK, Nagler PL, Glenn EP (2009) Changing perceptions of change: the role of scientists in Tamarix and river management. Restor Ecol 17(2):177–186

    Article  Google Scholar 

  • Ulph A (2004) Stable international environmental agreements with a stock pollutant, uncertainty and learning. J Risk Uncertain 29(1):53–73

    Article  Google Scholar 

  • Ulph A, Ulph D (1997) Global warming, irreversibility and learning. Econ J 107(442):636–650

    Article  Google Scholar 

  • Walters CJ (1986) Adaptive management of renewable resources. Collier Macmillan, New York

  • Walters CJ, Hilborn R (1978) Ecological optimization and adaptive management. Annu Rev Ecol Syst 9:157–188

    Article  Google Scholar 

  • Wilen JE (2007) Economics of spatial dynamic processes. Am J Agric Econ 89(5):1134–1144

    Article  Google Scholar 

  • Williamson M (1999) Invasions. Ecography 22:5–12

    Article  Google Scholar 

Download references

Acknowledgements

We thank Eli Fenichel and Glenn Sheriff for helpful comments on an earlier draft of the paper. We gratefully acknowledge funding from NSF grant #1414374 as part of the joint NSF-NIH-USDA Ecology and Evolution of Infectious Diseases program, and by UK Biotechnology and Biological Sciences Research Council grant BB/M008894/1. We also gratefully acknowledge funding from NOAA CSCOR Grant No. NA09NOS4780192, the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health, grant #1R01GM100471-01. The contents of the paper are solely the responsibility of the authors and do not necessarily represent the official views of NSF, NOAA CSCOR, or NIGMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Sims.

Appendix

Appendix

1.1 Continuous Mitigation Investment with Immediate Adoption

Assume agent 1 invests in mitigation immediately but may choose the magnitude of the investment \(r^{p}\). The optimal magnitude of investment by agent 1 is:

$$\begin{aligned} \mathop {\min }\limits _{r^{p}} \left\{ {W^{I}\left( {D_1^0 ,r^{p}} \right) } \right\} =\frac{D_1^0 }{\left( {\rho -\alpha ^{p}} \right) }-\frac{\alpha ^{p}{\bar{D}} _1 }{\rho \left( {\rho -\alpha ^{p}} \right) {\bar{D}} _1^{\varepsilon ^{p}}}D_1^{0{^{\varepsilon ^{p}}}}+C_1 \end{aligned}$$
(14)

The first-order condition for this problem implicitly defines the private optimum mitigation investment \(r^{{p}^{{\prime }}}\left( {D_1^0 } \right) \):

$$\begin{aligned} \frac{\theta D_1^0 }{\left( {\rho -\alpha ^{{p}^{\prime }}} \right) ^{2}}-\frac{\theta {\bar{D}} _1 }{\left( {\rho -\alpha ^{{p}^{\prime }}} \right) ^{2}}\left( {\frac{D_1^0 }{{\bar{D}} _1 }} \right) ^{\varepsilon ^{{p}^{\prime }}}\left[ {1-\left( {\ln \frac{D_1^0 }{{\bar{D}} _1 }} \right) {\Omega }} \right] =\frac{2C_1^{\prime }}{{r^{0}-r^{{p}^{\prime }}}} \end{aligned}$$
(15)

where \({\Omega }=\frac{\alpha ^{{p}^{\prime }}\left( {\rho -\alpha ^{{p}^{\prime }}} \right) }{\sigma ^{2}\rho }\left[ 1-\frac{\frac{\alpha ^{{p}^{\prime }}}{\sigma ^{2}}-\frac{1}{2}}{\sqrt{\left( {\frac{\alpha ^{{p}^{\prime }}}{\sigma ^{2}}}-\frac{1}{2} \right) ^{2}+\frac{2\rho }{\sigma ^{2}}}}\right] >0\) and \(C_1^{\prime } =c{\bar{A}} _1 \left( {r^{0}-r^{{p}^{\prime }}} \right) ^{2}\) . The left (right) hand side is the marginal cost (benefit) of choosing less mitigation or higher \(r^{p}\). The size of agent 1’s spatial jurisdiction influences the amount of mitigation through the second term on the left-hand side of (15).

The optimal amount of mitigation in jurisdiction 1 by the collective is:

$$\begin{aligned} \mathop {\min }\limits _{r^{p}} \left\{ {W^{I}\left( {D_1^0 ,r^{p}} \right) } \right\}= & {} \frac{D_1^0 }{\left( {\rho -\alpha ^{p}} \right) }-\frac{\alpha ^{p}{\bar{D}} _1 }{\rho \left( {\rho -\alpha ^{p}} \right) {\bar{D}} _1 ^{\varepsilon ^{p}}}D_1^{0 ^{\varepsilon ^{p}}}\nonumber \\&+\, C_1 +\mathop \sum \limits _{j=2}^N W_j e^{-\rho \left( {\frac{1}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^0 }} \right) +\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) } \end{aligned}$$
(16)

The first-order condition implicitly defines the social optimum amount of mitigation \(r^{{p}^{*}}\left( {D_1^0 } \right) \):

$$\begin{aligned}&\frac{\theta D_1^0 }{\left( {\rho -\alpha ^{{p}^{*}}} \right) ^{2}}-\frac{\theta {\bar{D}} _1 }{\left( {\rho -\alpha ^{{p}^{*}}} \right) ^{2}}\left( {\frac{D_1^0 }{{\bar{D}} _1 }} \right) ^{\varepsilon ^{{p}^{*}}}\left[ {1-\left( {\ln \frac{D_1^0 }{{\bar{D}} _1 }} \right) {\Omega }} \right] \nonumber \\&\quad +\frac{\mathop \sum \nolimits _{j=2}^N W_j e^{-\rho \left( {\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }\rho \theta }{\left( {\alpha ^{{p}^{*}}-\frac{1}{2}\sigma ^{2}} \right) ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^0 }} \right) e^{-\rho \left( {\frac{1}{\alpha ^{{p}^{*}}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^0 }} \right) } \right) }=\frac{2C_1^{*} }{r^{0}-r^{{p}^{*}}} \end{aligned}$$
(17)

Once again the left (right) hand side is the marginal cost (benefit) of less mitigation or higher \(r^{p}\). Compared to (15), internalizing the FSDE leads to an additional cost of less mitigation. This is arises because less mitigation allows the invasion to spread faster after the mitigation investment decreasing the time until agent 2’s damage is incurred.

It is straightforward to show \(r^{{p}^{\prime }}>r^{{p}^{*}}\). Equation (15) can be rewritten as:

$$\begin{aligned} \theta D_1^0 =\frac{2C_1^{\prime } \left( {\rho -\alpha ^{{p}^{\prime }}} \right) ^{2}}{r^{0}-r^{{p}^{\prime }}}+\theta {\bar{D}} _1 \left( {\frac{D_1^0 }{{\bar{D}} _1 }} \right) ^{\varepsilon ^{{p}^{\prime }}}\left[ {1-\left( {\ln \frac{D_1^0 }{{\bar{D}} _1 }} \right) \Omega '} \right] \end{aligned}$$
(18)

Equation (17) can be rewritten as:

$$\begin{aligned} \theta D_1^0= & {} \frac{2C_1^{*} \left( {\rho -\alpha ^{{p}^{*}}} \right) ^{2}}{r^{0}-r^{{p}^{*}}}+\theta {\bar{D}} _1 \left( {\frac{D_1^0 }{{\bar{D}} _1 }} \right) ^{\varepsilon ^{{p}^{*}}}\left[ {1-\left( {\ln \frac{D_1^0 }{{\bar{D}} _1 }} \right) {\Omega }^{{*}}} \right] \nonumber \\&-\frac{\left( {\rho -\alpha ^{{p}^{*}}} \right) ^{2}\mathop \sum \nolimits _{j=2}^N W_j e^{-\rho \left( {\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }\rho \theta }{\left( {\alpha ^{{p}^{*}}-\frac{1}{2}\sigma ^{2}} \right) ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^0 }} \right) e^{-\rho \left( {\frac{1}{\alpha ^{{p}^{*}}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^0 }} \right) } \right) }\qquad \end{aligned}$$
(19)

Setting these equal to one another

$$\begin{aligned}&\frac{2C_1^{\prime } \left( {\rho -\alpha ^{{p}^{\prime }}} \right) ^{2}}{r^{0}-r^{{p}^{\prime }}}+\theta {\bar{D}} _1 \left( {\frac{D_1^0 }{{\bar{D}} _1 }} \right) ^{\varepsilon ^{{p}^{\prime }}}\left[ {1-\left( {\ln \frac{D_1^0 }{{\bar{D}} _1 }} \right) {{\Omega }'}} \right] \nonumber \\&\qquad -\frac{2C_1^{*}(\rho -\alpha ^{p^{*}})^{2}}{r^{0}-r^{p^{*}}}-\theta {\bar{D}}_{1}\left( \frac{{D}_1^{0}}{{\bar{D}}_1}\right) ^{\varepsilon ^{p^{*}}}\left[ 1-\left( \ln \frac{D_{1}^{0}}{{\bar{D}}_{1}}\right) \Omega ^{*}\right] \nonumber \\&\quad =-\frac{\left( {\rho -\alpha ^{{p}^{*}}} \right) ^{2}\mathop \sum \nolimits _{j=2}^N W_j e^{-\rho \left( {\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }\rho \theta }{\left( {\alpha ^{{p}^{*}}-\frac{1}{2}\sigma ^{2}} \right) ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^0 }} \right) e^{-\rho \left( {\frac{1}{\alpha ^{{p}^{*}}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^0 }} \right) } \right) }\qquad \end{aligned}$$
(20)

Since the right-hand side of (20) is negative we know:

$$\begin{aligned}&\frac{2C_1^{*} \left( {\rho -\alpha ^{{p}^{*}}} \right) ^{2}}{r^{0}-r^{{p}^{*}}}+\theta {\bar{D}} \left( {\frac{D_1^0 }{{\bar{D}} _1 }} \right) ^{\varepsilon ^{{p}^{*}}}\left[ {1-\left( {\ln \frac{D_1^0 }{{\bar{D}} _1 }} \right) {\Omega }^{{*}}} \right] \nonumber \\&\quad >\frac{2C_1^{\prime } \left( {\rho -\alpha ^{{p}^{\prime }}} \right) ^{2}}{r^{0}-r^{{p}^{\prime }}}+\theta {\bar{D}} _1 \left( {\frac{D_1^0 }{{\bar{D}} _1 }} \right) ^{\varepsilon ^{{p}^{\prime }}}\left[ {1-\left( {\ln \frac{D_1^0 }{{\bar{D}} _1 }} \right) {{\Omega }^{'}}} \right] \end{aligned}$$
(21)

which implies \(r^{{p}^{\prime }}>r^{{p}^{*}}\) since the left- and right-hand sides of the above expression are functionally equivalent. The FSDE causes agent 1 to engage in less mitigation. This is intuitive and confirms previous results (Shogren and Crocker 1991).

1.1.1 Derivation of Collective and Individual Timing Threshold Conditions

The value matching condition is

$$\begin{aligned}&\quad \eta D_1^{{*} ^{\varepsilon ^{0}}}+\frac{D_1^{*} }{\left( {\rho -\alpha ^{0}} \right) }-Z_1^0 D_1^{{*} ^{\varepsilon ^{0}}}+\mathop \sum \limits _{j=2}^N W_j e^{-\rho \left( {\frac{1}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{*} }} \right) +\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }\nonumber \\&\quad =C_1 +\frac{D_1^{*} }{\left( {\rho -\alpha ^{p}} \right) }-Z_1^p D_1^{{*} ^{\varepsilon ^{p}}}+\mathop \sum \limits _{j=2}^N W_j e^{-\rho \left( {\frac{1}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{*} }} \right) +\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) } \end{aligned}$$
(22)

The smooth pasting condition is

$$\begin{aligned}&\varepsilon ^{0}\eta D_1^{{*} ^{\varepsilon ^{0}-1}}+\frac{1}{\left( {\rho -\alpha ^{0}} \right) }-\varepsilon ^{0}Z_1^0 D_1^{{*} ^{\varepsilon ^{0}-1}}+\frac{\rho \mathop \sum \nolimits _{j=2}^N W_j e^{-\rho \left( {\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }}{D_1^{*} }\frac{e^{-\rho \left( {\frac{1}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{*} }} \right) } \right) }}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\nonumber \\&\quad =\frac{1}{\left( {\rho -\alpha ^{p}} \right) }-\varepsilon ^{p}Z_1^p D_1^{{*} ^{\varepsilon ^{p}-1}}+\frac{\rho \mathop \sum \nolimits _{j=2}^N W_j e^{-\rho \left( {\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }}{D_1^{*} }\frac{e^{-\rho \left( {\frac{1}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{*} }} \right) } \right) }}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}} \end{aligned}$$
(23)

Combining (22) and (23) we find

$$\begin{aligned}&\frac{\varepsilon ^{0}}{D_1^{*} }\left[ {{\begin{array}{l} {\mathop \sum \limits _{j=2}^N W_j e^{-\rho \left( {\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }\left[ {e^{-\rho \left( {\frac{1}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{*} }} \right) } \right) }-e^{-\rho \left( {\frac{1}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{*} }} \right) } \right) }} \right] } \\ {+C_1 +\frac{D_1^{*} }{\left( {\rho -\alpha ^{p}} \right) }-Z_1^p D_1^{{*} ^{\varepsilon ^{p}}}+Z_1^0 D_1^{{*} ^{\varepsilon ^{0}}}-\frac{D_1^{*} }{\left( {\rho -\alpha ^{0}} \right) }} \\ \end{array} }} \right] \nonumber \\&\quad +\frac{1}{\left( {\rho -\alpha ^{0}} \right) }-\varepsilon ^{0}Z_1^0 D_1^{{*} ^{\varepsilon ^{0}-1}}+\frac{\rho \mathop \sum \nolimits _{j=2}^N W_j e^{-\rho \left( {\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }}{D_1^{*} }\frac{e^{-\rho \left( {\frac{1}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{*} }} \right) } \right) }}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\nonumber \\&\quad =\frac{1}{\left( {\rho -\alpha ^{p}} \right) }-\varepsilon ^{p}Z_1^p D_1^{{*} ^{\varepsilon ^{p}-1}}+\frac{\rho \mathop \sum \nolimits _{j=2}^N W_j e^{-\rho \left( {\mathop \sum \nolimits _{n=2}^{j-1} {\bar{t}} _n } \right) }}{D_1^{*} }\frac{e^{-\rho \left( {\frac{1}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{*} }} \right) } \right) }}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\qquad \quad \end{aligned}$$
(24)

which can be rewritten as

$$\begin{aligned} 1=\frac{D_1^{*} \frac{\alpha ^{0}-\alpha ^{p}}{\left( {\rho -\alpha ^{0}} \right) \left( {\rho -\alpha ^{p}} \right) }-\frac{\left( {\varepsilon ^{p}-\varepsilon ^{0}} \right) }{\left( {\varepsilon ^{0}-1} \right) }Z_1^p D_1^{{*} ^{\varepsilon ^{p}}}+\frac{\varepsilon ^{0}}{\left( {\varepsilon ^{0}-1} \right) }X-\frac{D_1^{*} }{\left( {\varepsilon ^{0}-1} \right) }{\Delta }}{\frac{\varepsilon ^{0}}{\left( {\varepsilon ^{0}-1} \right) }C_1 } \end{aligned}$$
(25)

The solution to (25) must also ensure the option value is negative:

$$\begin{aligned} \eta =-\frac{C_1 }{\left( {\varepsilon ^{0}-1} \right) D_1^{{*} ^{\varepsilon ^{0}}}}-\frac{\left( {\varepsilon ^{p}-1} \right) }{\left( {\varepsilon ^{0}-1} \right) }Z_1^p D_1^{{*} ^{\varepsilon ^{p}}-\varepsilon ^{0}}+\frac{\hbox {X}-D_1^{*} {\Delta }}{\left( {\varepsilon ^{0}-1} \right) D_1^{{*} ^{\varepsilon ^{0}}}}+Z_1^0 <0 \end{aligned}$$

The critical investment threshold for individual timing is found using a similar procedure and must also ensure the option value is negative

$$\begin{aligned} \eta =-\frac{C_1 }{\left( {\varepsilon ^{0}-1} \right) D_1^{{\prime } ^{\varepsilon ^{0}}}}-\frac{\left( {\varepsilon ^{p}-1} \right) }{\left( {\varepsilon ^{0}-1} \right) }Z_1^p D_1^{{\prime } ^{\varepsilon ^{p}-\varepsilon ^{0}}}+Z_1^0 <0 \end{aligned}$$

1.1.2 Sensitivity Analysis

Our model shows how an FSDE can delay or prematurely initiate investments in damage mitigation. This section investigates the sensitivity of this result to the parameter values in the numerical example. Due to the complexity of the model, an analytical comparative analysis is not possible. Instead we report how the change in expected time of mitigation investment in jurisdiction 1 due to the FSDE is impacted by varying each parameter value (Table 1).

Table 1 Sensitivity of model results to a change in parameter values

1.1.3 Derivation of Compensated Individual Timing Threshold Condition and Payment

The payment from agent 2 changes agent 1’s value matching condition to

$$\begin{aligned}&\eta D_1^{{\prime } ^{\varepsilon ^{0}}}+\frac{D_1^{\prime }}{\left( {\rho -\alpha ^{0}} \right) }-Z_1^0 D_1^{{\prime } ^{\varepsilon ^{0}}}\nonumber \\&\quad =C_1 +\frac{D_1^{\prime }}{\left( {\rho -\alpha ^{p}} \right) }-Z_1^p D_1^{{\prime } ^{\varepsilon ^{p}}}-\delta \left[ \frac{1}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\ln \left( \frac{D_1^{\prime }}{D^{0}} \right) +\frac{1}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\ln \left( \frac{{\bar{D}} _1 }{D_1^{\prime }} \right) -\tau \right] \nonumber \\ \end{aligned}$$
(26)

and the smooth pasting condition becomes

$$\begin{aligned}&\varepsilon ^{0}\eta D_1^{{\prime } ^{\varepsilon ^{0}-1}}+\frac{1}{\left( {\rho -\alpha ^{0}} \right) }-\varepsilon ^{0}Z_1^0 D_1^{{\prime } ^{\varepsilon ^{0}-1}}\,\nonumber \\&\quad =\frac{1}{\left( {\rho -\alpha ^{p}} \right) }-\varepsilon ^{p}Z_1^p D_1^{{\prime } ^{\varepsilon ^{p}-1}}+\frac{\delta }{D_1^{\prime }}\left[ {\frac{\alpha ^{0}-\alpha ^{p}}{\left( {\alpha ^{0}-\frac{1}{2}\sigma ^{2}} \right) \left( {\alpha ^{p}-\frac{1}{2}\sigma ^{2}} \right) }} \right] \end{aligned}$$
(27)

Combining (26) and (27) we find

$$\begin{aligned}&\frac{\varepsilon ^{0}}{\left( {\varepsilon ^{0}-1} \right) }C_1 \,=D_1^{\prime } \frac{\alpha ^{0}-\alpha ^{p}}{\left( {\rho -\alpha ^{0}} \right) \left( {\rho -\alpha ^{p}} \right) }-\frac{\left( {\varepsilon ^{p}-\varepsilon ^{0}} \right) }{\left( {\varepsilon ^{0}-1} \right) }Z_1^p D_1^{{\prime } ^{\varepsilon ^{p}}}\nonumber \\&\quad +\frac{\delta }{\left( {\varepsilon ^{0}-1} \right) }\left[ \frac{\varepsilon ^{0}}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\ln \left( \frac{D_1^{\prime }}{D^{0}} \right) +\!\frac{\varepsilon ^{0}}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\ln \left( {\frac{{\bar{D}} _1 }{D_1^{\prime }}} \right) -\!\varepsilon ^{0}\tau +\frac{\alpha ^{0}-\alpha ^{p}}{\left( {\alpha ^{0}-\frac{1}{2}\sigma ^{2}} \right) {\left( {\alpha ^{p}-\frac{1}{2}\sigma ^{2}} \right) }}\right] \nonumber \\ \end{aligned}$$
(28)

The compensated timing threshold becomes

$$\begin{aligned} \frac{D_1^{\prime } \frac{\alpha ^{0}-\alpha ^{p}}{\left( {\rho -\alpha ^{0}} \right) \left( {\rho -\alpha ^{p}} \right) }-\frac{\left( {\varepsilon ^{p}-\varepsilon ^{0}} \right) }{\left( {\varepsilon ^{0}-1} \right) }Z_1^p D_1^{{\prime } ^{\varepsilon ^{p}}}+{\Lambda }}{\frac{\varepsilon ^{0}}{\left( {\varepsilon ^{0}-1} \right) }C_1}=1 \end{aligned}$$
(29)

where \({\Lambda }=\frac{\delta }{(\varepsilon ^{0}-1)} \left[ \frac{\varepsilon ^{0}}{\alpha ^{0} -\frac{1}{2}\sigma ^{2}}\ln \left( \frac{D_1^{\prime }}{D^{0}}\right) +\frac{\varepsilon ^{0}}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}} \ln \left( \frac{{\bar{D}}_1}{D_1^{\prime }}\right) -\varepsilon ^{0}\tau +\frac{\alpha ^{0}-\alpha ^{p}}{\left( {\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\right) \left( \alpha ^{p}-\frac{1}{2}\sigma ^{2}\right) }\right] \).

If \(D_1^{\prime } >D_1^*\), agent 1’s payoff from an immediate investment in mitigation under this payment scheme is

$$\begin{aligned} W_1^I =C_1 +\frac{D_1^{\prime }}{\left( \rho -\alpha ^{p}\right) } -Z_1^{p} D_1^{{\prime }^{\varepsilon ^{p}}}-\delta \left[ \frac{1}{\alpha ^{0}-\frac{1}{2}\sigma ^{2}}\ln \left( \frac{D_1^{\prime }}{D^{0}}\right) +\frac{1}{\alpha ^{p}-\frac{1}{2}\sigma ^{2}}\ln \left( \frac{{\bar{D}}_{1}}{D_1^{\prime }}\right) -\tau \right] \nonumber \\ \end{aligned}$$
(30)

Comparing (8) and (29), \(\delta \) is found by setting \({\Lambda }\) equal to \(\frac{\varepsilon ^{0}X-D_1^{*} {\Delta }}{\left( {\varepsilon ^{0}-1} \right) }\) and solving.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sims, C., Finnoff, D. & Shogren, J.F. Taking One for the Team: Is Collective Action More Responsive to Ecological Change?. Environ Resource Econ 70, 589–615 (2018). https://doi.org/10.1007/s10640-016-0099-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10640-016-0099-y

Keywords

JEL Classification

Navigation