Skip to main content
Log in

An accelerated stopping rule for the Nested Partition Hybrid Algorithm for discrete stochastic optimization

  • Published:
Discrete Event Dynamic Systems Aims and scope Submit manuscript

Abstract

In this paper we present an accelerated stopping rule for improving the performance of the Nested Partition Hybrid Algorithm (NPHA), which is a general purpose algorithm for stochastic discrete optimization. Numerical examples will illustrate the impact of the accelerated stopping rule on the overall performance of NPHA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alrefaei M H, Andradòttir S (1999) A simulated annealing algorithm with constant temperature for discrete stochastic optimization. Manag Sci 45:748–764

    Article  MATH  Google Scholar 

  • Alrefaei M H, Andradòttir S (2001) A modification of the stochastic ruler method for discrete stochastic optimization. Eur J Oper Res 133:160–182

    Article  MATH  Google Scholar 

  • Andradòttir S (1995) A Method for Discrete Stochastic Optimization. Manag Sci 41:1946–1961

    Article  MATH  Google Scholar 

  • Andradòttir S (1996a) A global search method for discrete stochastic optimization. SIAM J Optim 6:513–530

    Article  MATH  Google Scholar 

  • Andradòttir S (1996b) Handbook of Simulation: principles, methodology, advances, applications, and practice. Wiley, New York

    Google Scholar 

  • Branke J, Chick SE, Schmidt C (2007) Selecting a selection procedure. Manag Sci 53:1916–1932

    Article  MATH  Google Scholar 

  • Chen C H (1996) A lower bound for the correct subset selection probability and its application to discrete-event system simulations. IEEE Trans Autom Control 41(8):1227–1231

    Article  MATH  Google Scholar 

  • Chen CH, Lin J, Yücesan E, Chick SE (2000) Simulation budget allocation for further enhancing the efficiency of ordinal optimization. Discrete Event Dyn Syst 10(3):251–270

    Article  MATH  MathSciNet  Google Scholar 

  • Chen CH, He D, Fu M, Lee LH (2008) Efficient simulation budget allocation for selecting an optimal subset. INFORMS J Comput 20(4):579–595

    Article  Google Scholar 

  • Chen CH (2010) Stochastic simulation optimization: an optimal computing budget allocation. vol. 1, World scientific

  • Fu MC (2002) Optimization for simulation: theory vs. practice. INFORMS J Comput 14(3):192–215

    Article  MATH  MathSciNet  Google Scholar 

  • Fu MC, Glover FW, April J (2005) Simulation optimization: a review, new developments, and applications. In: Proceedings of the 2005 winter simulation conference, pp 83–95

  • Gong WB, Ho YC, Zhai W (1999) Stochastic comparison algorithm for discrete optimization with estimation. SIAM J Optim 10:384–404

    Article  MATH  MathSciNet  Google Scholar 

  • He D, Lee L H, Chen CH, Fu M, Wasserkrug S (2010) Simulation optimization using the cross-entropy method with optimal computing budget allocation.ACM Trans Model Comput Simul 20(1):4:1-4:22

    Article  Google Scholar 

  • Ho YC, Zhao QC, Jia QS (2007) Ordinal optimization: soft optimization for hard problems. Springer, New York

    Book  Google Scholar 

  • Hong LJ, Nelson BL (2006) Discrete optimization via simulation using COMPASS. Oper Res 54(1):115–129

    Article  MATH  Google Scholar 

  • Hong LJ, Nelson BL (2009) A brief introduction to optimization via simulation. In: Proceedings of the 2009 Winter Simulation Conference, pp 75–85

  • Hu J, Fu MC, Marcus SI (2007) A model reference adaptive search method for global optimization. Oper Res 55:549–568

    Article  MATH  MathSciNet  Google Scholar 

  • Pichitlamken J, Nelson BL (2002) A combined procedure for optimization via simulation. In: Proceedings of the 2002 Winter Simulation Conference, pp 292–300

  • Pichitlamken J, Nelson BL (2003) A combined procedure for optimization via simulation. The ACM Trans Model Comput Simul 13:155–179

    Article  Google Scholar 

  • Schmidt C, Branke J, Chick SE (2006) Integrating techniques from statistical ranking into evolutionary algorithms. Lect Notes Comput Sci 3907:752–763

    Article  Google Scholar 

  • Shi L, Òlafsson S (2000) Nested partitions method for global optimization. Oper Res 48(3):390–407

    Article  MATH  MathSciNet  Google Scholar 

  • Shi L, Chen CH (2000) A new algorithm for stochastic discrete resource allocation optimization. Discrete Event Dyn Syst Theory Appl 10:271–294

    Article  MATH  MathSciNet  Google Scholar 

  • Shi L, Òlafsson S (2002) Ordinal comparison via the nested partitions method. Discrete Event Dyn Syst Theory Appl 12:211–239

    Article  MATH  Google Scholar 

  • Vakili P (1991) Using a standard clock technique for efficient simulation. Oper Res Lett 10:445–452

    Article  MATH  MathSciNet  Google Scholar 

  • Vakili P, Ho YC, Sreenivas RS (1992) Ordinal Optimization of DEDS. Discrete Event Dyn Syst Theory Appl 2:61–88

    Article  MATH  Google Scholar 

  • Xu J, Nelson BL, Hong LJ (2010) Industrial strength COMPASS: a comprehensive algorithm and software for optimization via simulation. ACM Trans Model Comput Simul 20(1). Article No 3

  • Yan D, Mukai H (1992) Stochastic discrete optimization. SIAM J Optim 30:594–612

    Article  MATH  MathSciNet  Google Scholar 

  • Zhang S, Chen P, Lee LH, Peng CE, Chen CH (2011) Simulation optimization using the particle swarm optimization with optimal computing budget allocation. In: Proceedings of the 2011 winter simulation conference, pp 4303–4314

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joost Berkhout.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berkhout, J. An accelerated stopping rule for the Nested Partition Hybrid Algorithm for discrete stochastic optimization. Discrete Event Dyn Syst 25, 441–452 (2015). https://doi.org/10.1007/s10626-014-0191-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10626-014-0191-9

Keywords

Navigation