Skip to main content
Log in

Bounds and constructions for \({\overline{3}}\)-separable codes with length 3

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Separable codes were introduced to provide protection against illegal redistribution of copyrighted multimedia material. Let \({\mathcal {C}}\) be a code of length n over an alphabet of q letters. The descendant code \({\mathsf{desc}}({\mathcal {C}}_0)\) of \({\mathcal {C}}_0 = \{\mathbf{c}_1, \mathbf{c}_2, \ldots , \mathbf{c}_t\} \subseteq {{\mathcal {C}}}\) is defined to be the set of words \(\mathbf{x} = (x_1, x_2, \ldots ,x_n)^T\) such that \(x_i \in \{c_{1,i}, c_{2,i}, \ldots , c_{t,i}\}\) for all \(i=1, \ldots , n\), where \(\mathbf{c}_j=(c_{j,1},c_{j,2},\ldots ,c_{j,n})^T\). \({\mathcal {C}}\) is a \({\overline{t}}\)-separable code if for any two distinct \({\mathcal {C}}_1, {\mathcal {C}}_2 \subseteq {\mathcal {C}}\) with \(|{\mathcal {C}}_1| \le t\), \(|{\mathcal {C}}_2| \le t\), we always have \({\mathsf{desc}}({\mathcal {C}}_1) \ne {\mathsf{desc}}({\mathcal {C}}_2)\). Let \(M({\overline{t}},n,q)\) denote the maximal possible size of such a separable code. In this paper, an upper bound on \(M({\overline{3}},3,q)\) is derived by considering an optimization problem, and then two constructions for \({\overline{3}}\hbox {-SC}(3,M,q)\)s are provided by means of perfect hash families and Steiner triple systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazrafshan M., van Trung T.: Improved bounds for separating hash families. Des. Codes Cryptogr. 69, 369–382 (2013).

  2. Blackburn S.R.: Frameproof codes. SIAM J. Discret. Math. 16, 499–510 (2003).

  3. Blackburn S.R.: Perfect hash families: probabilistic methods and explicit constructions. J. Comb. Theory Ser. A 92, 54–60 (2000).

  4. Blackburn S.R.: Probabilistic existence results for separable codes. Preprint (2015). arXiv:1505.02597.

  5. Boneh D., Shaw J.: Collusion-secure fingerprinting for digital data. IEEE Trans. Inf. Theory 44, 1897–1905 (1998).

  6. Cheng M., Miao Y.: On anti-collusion codes and detection algorithms for multimedia fingerprinting. IEEE Trans. Inf. Theory 57, 4843–4851 (2011).

  7. Cheng M., Ji L., Miao Y.: Separable codes. IEEE Trans. Inf. Theory 58, 1791–1803 (2012).

  8. Cheng M., Fu H.-L., Jiang J., Lo Y.-H., Miao Y.: New bounds on \({\overline{2}}\)-separable codes of length 2. Des. Codes Cryptogr. 74, 31–40 (2015).

  9. Hollmann H.D.L., Lint J.H., Linnartz J.-P., Tolhuizen L.M.G.M.: On codes with the identifiable parent property. J. Comb. Theory Ser. A 82, 121–133 (1998).

  10. Staddon J.N., Stinson D.R., Wei R.: Combinatorial properties of frameproof and traceability codes. IEEE Trans. Inf. Theory 47, 1042–1049 (2001).

  11. Stinson D.R., van Trung T., Wei R.: Secure frameproof codes, key distribution patterns, group. J. Stat. Plan. Inference 86, 595–617 (2000).

  12. Stinson D.R., Wei R., Chen K.: On generalized separating hash families. J. Comb. Theory Ser. A 115, 105–120 (2008).

  13. Trappe W., Wu M., Wang Z.J., Liu K.J.R.: Anti-collusion fingerprinting for multimedia. IEEE Trans. Signal Process. 51, 1069–1087 (2003).

  14. Wilson R.M.: Cyclotomy and difference families in elementary abelian groups. J. Number Theory 4, 17–47 (1972).

Download references

Acknowledgments

Cheng is supported in part by NSFC (No.11301098), Guangxi Higher Institutions’ Program of Introducing 100 High-Level Overseas Talents, and Guangxi “Bagui Scholar” Teams for Innovation and Research. Jiang is supported by Guangxi Natural Science Foundations (No.2013GXNSFCA019001 and 2014GXNSFDA118001), and Foundation of Guangxi Education Department (No.2013YB039). Miao is supported by JSPS Grant-in-Aid for Scientific Research (C) (No.15K04974)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minquan Cheng.

Additional information

Communicated by C. J. Colbourn.

Appendix: Proof of Theorem 2.3

Appendix: Proof of Theorem 2.3

The necessity is clear from Theorem 1.3 and the discussion in Sect. 2. We consider its sufficiency. From the relationship between a separable code and a FPC in Theorem 1.3, it is sufficient to prove that for any distinct \(A, B\subseteq {\mathcal {C}}\) with \(|A|=|B|=3\), we have \({\mathsf{desc}}(A)\ne {\mathsf{desc}}(B)\) except that \(A \bigcup B\) equals one of the forbidden configurations in (1) and (2).

Let \(A=\{\mathbf{a}=(a_1, a_2, a_3)^T\), \(\mathbf{b}=(b_1,b_2,b_3)^T\), \(\mathbf{c}=(c_1,c_2,c_3)^T\}\subseteq {\mathcal {C}}\) and \(B=\{\mathbf{d}=(d_1,d_2,d_3)^T\), \(\mathbf{e}=(e_1,e_2,e_3)^T\), \(\mathbf{f}=(f_1,f_2,f_3)^T\}\) \(\subseteq {\mathcal {C}}\). Suppose that \({\mathsf{desc}}(A)={\mathsf{desc}}(B)\), \(A\ne B\) and \(|A|=|B|=3\). Then we have \(\{a_1,b_1,c_1\}=\{d_1,e_1,f_1\}\), \(\{a_2,b_2,c_2\}=\{d_2,e_2,f_2\}\) and \(\{a_3,b_3,c_3\}=\{d_3,e_3,f_3\}\) by the definition of a separable code. There are three cases to be considered:

  1. (I)

    \(|A\bigcap B|=2\). Without loss of generality, we may assume that \(\mathbf{b}=\mathbf{e}\) and \(\mathbf{c}=\mathbf{f}\), that is, \(A=\{\mathbf{a},\mathbf{b},\mathbf{c}\}\), \(B=\{\mathbf{b},\mathbf{c},\mathbf{d}\}\). We list them as follows.

    $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} b_{1} &{} c_{1} &{} d_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} d_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} \end{array}\right) \end{aligned}$$
    (6)

    Since \({\mathcal {C}}\) is a 2-FPC, the following statements hold.

    • \(\mathbf{d}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{b}\})\) holds because \(\mathbf{d}\not \in \{\mathbf{a},\mathbf{b}\}\). Without loss of generality, we may assume that \(d_{1}\not \in \{a_{1},b_{1}\}\), then \(c_1=d_1\) and \(a_1=b_1\) always hold since \(\{a_1,b_1,c_1\} =\{b_1,c_1,d_1\}\). Then (6) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} a_{1} &{} c_{1} &{} c_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} d_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} \end{array}\right) \end{aligned}$$
      (7)
    • \(\mathbf{d}\not \in {\mathsf{desc}}(\{\mathbf{b},\mathbf{c}\})\) holds because \(\mathbf{d}\not \in \{\mathbf{b},\mathbf{c}\}\). Without loss of generality, we may assume that \(d_{2}\not \in \{b_{2},c_{2}\}\), then \(a_2=d_2\) always holds since \(\{a_2,b_2,c_2\} =\{b_2,c_2,d_2\}\). Then (7) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} a_{1} &{} c_{1} &{} c_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} a_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} \end{array}\right) \end{aligned}$$
      (8)
    • \(\mathbf{d}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{c}\})\) holds because \(\mathbf{d}\not \in \{\mathbf{a},\mathbf{c}\}\). Then we must have \(d_{3}\not \in \{a_{3},c_{3}\}\), which implies \(b_3=d_3\) and \(a_3=c_3\) since \(\{a_3,b_3,c_3\}=\{b_3,c_3,d_3\}\). Then (8) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} a_{1} &{} c_{1} &{} c_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} a_{2}\\ a_{3} &{} b_{3} &{} a_{3} &{} b_{3} \end{array}\right) \end{aligned}$$
      (9)

      Obviously, (9) equals \(\triangle _1\) in (1), which is a forbidden configuration in \({\mathcal {C}}\).

  2. (II)

    \(|A\bigcap B|=1\). Without loss of generality, we may assume that \(\mathbf{c}=\mathbf{f}\), that is, \(A=\{\mathbf{a},\mathbf{b},\mathbf{c}\}\), \(B=\{\mathbf{c},\mathbf{d},\mathbf{e}\}\). We list them as follows.

    $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} b_{1} &{} c_{1} &{} d_{1} &{} e_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} d_{2} &{} e_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} &{} e_{3} \end{array}\right) \end{aligned}$$
    (10)

    Since \({\mathcal {C}}\) is a 2-FPC, the following statements hold.

    • \(\mathbf{d}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{b}\})\) holds because \(\mathbf{d}\not \in \{\mathbf{a},\mathbf{b}\}\). Without loss of generality, we may assume that \(d_{1}\not \in \{a_{1},b_{1}\}\), then \(c_1=d_1\) and \(a_1=b_1=e_1\) always hold since \(\{a_1,b_1,c_1\}=\{c_1,d_1,e_1\}\). Then (10) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} a_{1} &{} c_{1} &{} c_{1} &{} a_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} d_{2} &{} e_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} &{} e_{3} \end{array}\right) \end{aligned}$$
      (11)
    • \(\mathbf{e}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{b}\})\) holds because \(\mathbf{e}\not \in \{\mathbf{a},\mathbf{b}\}\). Without loss of generality, we may assume that \(e_{2}\not \in \{a_{2},b_{2}\}\), then \(c_2=e_2\) and \(a_2=b_2=d_2\) always hold since \(\{a_2,b_2,c_2\}=\{c_2,d_2,e_2\}\). Then (11) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} a_{1} &{} c_{1} &{} c_{1} &{} a_{1}\\ a_{2} &{} a_{2} &{} c_{2} &{} a_{2} &{} c_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} &{} e_{3} \end{array}\right) \end{aligned}$$
      (12)
    • \(\mathbf{d}\not \in {\mathsf{desc}}(\{\mathbf{b},\mathbf{c}\})\) holds because \(\mathbf{d}\not \in \{\mathbf{b},\mathbf{c}\}\). Then we must have \(d_{3}\not \in \{b_{3},c_{3}\}\), which implies \(a_3=d_3\) since \(\{a_3,b_3,c_3\}=\{c_3,d_3,e_3\}\). Then (12) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} a_{1} &{} c_{1} &{} c_{1} &{} a_{1}\\ a_{2} &{} a_{2} &{} c_{2} &{} a_{2} &{} c_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} a_{3} &{} e_{3} \end{array}\right) \end{aligned}$$

      Obviously, \(\mathbf{d}\in {\mathsf{desc}}(\{\mathbf{a},\mathbf{c}\})\) holds. This contradicts the definition of a 2-FPC since \(\mathbf{d}\not \in \{\mathbf{a},\mathbf{c}\}\).

    So the case of \(|A\bigcap B|=1\) can never happen.

  3. (III)

    \(|A\bigcap B|=0\). We list A and B as follows.

    $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} b_{1} &{} c_{1} &{} d_{1} &{} e_{1} &{} f_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} d_{2} &{} e_{2} &{} f_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} &{} e_{3} &{} f_{3} \end{array}\right) \end{aligned}$$
    (13)

    Since \({\mathcal {C}}\) is a 2-FPC, the following statements hold.

    • \(\mathbf{d}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{b}\})\) holds because \(\mathbf{d}\not \in \{\mathbf{a},\mathbf{b}\}\). Without loss of generality, we may assume that \(d_{1}\not \in \{a_{1},b_{1}\}\), then \(c_1=d_1\) always holds since \(\{a_1,b_1,c_1\} =\{d_1,e_1,f_1\}\). Then (13) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} b_{1} &{} c_{1} &{} c_{1} &{} e_{1} &{} f_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} d_{2} &{} e_{2} &{} f_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} &{} e_{3} &{} f_{3} \end{array}\right) \end{aligned}$$
      (14)
    • \(\mathbf{d}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{c}\})\) holds because \(\mathbf{d}\not \in \{\mathbf{a},\mathbf{c}\}\). Without loss of generality, we may assume that \(d_{2}\not \in \{a_{2},c_{2}\}\), then \(b_2=d_2\) always holds since \(\{a_2,b_2,c_2\} =\{d_2,e_2,f_2\}\). Then (14) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} b_{1} &{} c_{1} &{} c_{1} &{} e_{1} &{} f_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} b_{2} &{} e_{2} &{} f_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} d_{3} &{} e_{3} &{} f_{3} \end{array}\right) \end{aligned}$$
      (15)
    • \(\mathbf{d}\not \in {\mathsf{desc}}(\{\mathbf{b},\mathbf{c}\})\) holds because \(\mathbf{d}\not \in \{\mathbf{b},\mathbf{c}\}\). Then we must have \(d_{3}\not \in \{b_{3},c_{3}\}\), which implies \(a_3=d_3\) since \(\{a_3,b_3,c_3\}=\{d_3,e_3,f_3\}\). Then (15) can be written as follows.

      $$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} b_{1} &{} c_{1} &{} c_{1} &{} e_{1} &{} f_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} b_{2} &{} e_{2} &{} f_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} a_{3} &{} e_{3} &{} f_{3} \end{array}\right) \end{aligned}$$
    • \(\mathbf{e}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{b}\})\) holds because \(\mathbf{e}\not \in \{\mathbf{a},\mathbf{b}\}\). There must exist an index \(1\le i\le 3\) such that \(e_{i}\not \in \{a_{i},b_{i}\}\) holds.

      1. (1.1)

        If \(e_{1}\not \in \{a_{1},b_{1}\}\) holds, then \(c_1=e_1\) always holds since \(\{a_1,b_1,c_1\}=\{c_1,e_1,f_1\}\);

      2. (1.2)

        If \(e_{2}\not \in \{a_{2},b_{2}\}\) holds, then \(c_2=e_2\) always holds since \(\{a_2,b_2,c_2\}=\{b_2,e_2,f_2\}\);

      3. (1.3)

        If \(e_{3}\not \in \{a_{3},b_{3}\}\) holds, then \(c_3=e_3\) always holds since \(\{a_3,b_3,c_3\}=\{a_3,e_3,f_3\}\).

    • \(\mathbf{e}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{c}\})\) holds because \(\mathbf{e}\not \in \{\mathbf{a},\mathbf{c}\}\). There must exist an integer \(1\le i\le 3\) such that \(e_{i}\not \in \{a_{i},c_{i}\}\) holds.

      1. (2.1)

        If \(e_{1}\not \in \{a_{1},c_{1}\}\) holds, then \(b_1=e_1\) always holds since \(\{a_1,b_1,c_1\}=\{c_1,e_1,f_1\}\);

      2. (2.2)

        If \(e_{2}\not \in \{a_{2},c_{2}\}\) holds, then \(b_2=e_2\) always holds since \(\{a_2,b_2,c_2\}=\{b_2,e_2,f_2\}\);

      3. (2.3)

        If \(e_{3}\not \in \{a_{3},c_{3}\}\) holds, then \(b_3=e_3\) always holds since \(\{a_3,b_3,c_3\}=\{a_3,e_3,f_3\}\).

    • \(\mathbf{e}\not \in {\mathsf{desc}}(\{\mathbf{b},\mathbf{c}\})\) holds because \(\mathbf{e}\not \in \{\mathbf{b},\mathbf{c}\}\). There must exist an index \(1\le i\le 3\) such that \(e_{i}\not \in \{b_{i},c_{i}\}\) holds.

      1. (3.1)

        If \(e_{1}\not \in \{b_{1},c_{1}\}\) holds, then \(a_1=e_1\) always holds since \(\{a_1,b_1,c_1\}=\{c_1,e_1,f_1\}\);

      2. (3.2)

        If \(e_{2}\not \in \{b_{2},c_{2}\}\) holds, then \(a_2=e_2\) always holds since \(\{a_2,b_2,c_2\}=\{b_2,e_2,f_2\}\);

      3. (3.3)

        If \(e_{3}\not \in \{b_{3},c_{3}\}\) holds, then \(a_3=e_3\) always holds since \(\{a_3,b_3,c_3\}=\{a_3,e_3,f_3\}\).

    • \(\mathbf{f}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{b}\})\) holds because \(\mathbf{f}\not \in \{\mathbf{a},\mathbf{b}\}\). There must exist an index \(1\le i\le 3\) such that \(f_{i}\not \in \{a_{i},b_{i}\}\) holds.

      1. (4.1)

        If \(f_{1}\not \in \{a_{1},b_{1}\}\) holds, then \(c_1=f_1\) always holds since \(\{a_1,b_1,c_1\}=\{c_1,e_1,f_1\}\);

      2. (4.2)

        If \(f_{2}\not \in \{a_{2},b_{2}\}\) holds, then \(c_2=f_2\) always holds since \(\{a_2,b_2,c_2\}=\{b_2,e_2,f_2\}\);

      3. (4.3)

        If \(f_{3}\not \in \{a_{3},b_{3}\}\) holds, then \(c_3=f_3\) always holds since \(\{a_3,b_3,c_3\}=\{a_3,e_3,f_3\}\).

    • \(\mathbf{f}\not \in {\mathsf{desc}}(\{\mathbf{a},\mathbf{c}\})\) holds because \(\mathbf{f}\not \in \{\mathbf{a},\mathbf{c}\}\). There must exist an index \(1\le i\le 3\) such that \(f_{i}\not \in \{a_{i},c_{i}\}\) holds.

      1. (5.1)

        If \(f_{1}\not \in \{a_{1},c_{1}\}\) holds, then \(b_1=f_1\) always holds since \(\{a_1,b_1,c_1\}=\{c_1,e_1,f_1\}\);

      2. (5.2)

        If \(f_{2}\not \in \{a_{2},c_{2}\}\) holds, then \(b_2=f_2\) always holds since \(\{a_2,b_2,c_2\}=\{b_2,e_2,f_2\}\);

      3. (5.3)

        If \(f_{3}\not \in \{a_{3},c_{3}\}\) holds, then \(b_3=f_3\) always holds since \(\{a_3,b_3,c_3\}=\{a_3,e_3,f_3\}\).

    • \(\mathbf{f}\not \in {\mathsf{desc}}(\{\mathbf{b},\mathbf{c}\})\) holds because \(\mathbf{f}\not \in \{\mathbf{b},\mathbf{c}\}\). There must exist an index \(1\le i\le 3\) such that \(f_{i}\not \in \{b_{i},c_{i}\}\) holds.

      1. (6.1)

        If \(f_{1}\not \in \{b_{1},c_{1}\}\) holds, then \(a_1=f_1\) always holds since \(\{a_1,b_1,c_1\}=\{c_1,e_1,f_1\}\);

      2. (6.2)

        If \(f_{2}\not \in \{b_{2},c_{2}\}\) holds, then \(a_2=f_2\) always holds since \(\{a_2,b_2,c_2\}=\{b_2,e_2,f_2\}\);

      3. (6.3)

        If \(f_{3}\not \in \{b_{3},c_{3}\}\) holds, then \(a_3=f_3\) always holds since \(\{a_3,b_3,c_3\}=\{a_3,e_3,f_3\}\).

It is easy to check that for any \(i\in \{1,2,3\}\) or any \(i\in \{4,5,6\}\), and for any \(j\in \{1,2,3\}\), once the case (i.j) above occurs, none of \((i'.j)\) cases occurs for any \(i'\in \{1,2,3\}\setminus \{i\}\) or any \(i'\in \{4,5,6\}\setminus \{i\}\), respectively. So there are \(3\times 2\times 1\times 3\times 2\times 1=36\) cases to be considered.

$$\begin{aligned}&\{(1.3),(2.2),(3.1),(4.2),(5.1),(6.3)\},\ \ \ \{(1.1),(2.3),(3.2),(4.2),(5.1),(6.3)\},\\&\{(1.1),(2.3),(3.2),(4.2),(5.3),(6.1)\},\ \ \ \{(1.1),(2.3),(3.2),(4.3),(5.1),(6.2)\},\\&\{(1.1),(2.3),(3.2),(4.3),(5.2),(6.1)\},\ \ \ \{(1.2),(2.1),(3.3),(4.1),(5.3),(6.2)\},\\&\{(1.2),(2.1),(3.3),(4.2),(5.3),(6.1)\},\ \ \ \{(1.2),(2.1),(3.3),(4.3),(5.1),(6.2)\},\\&\{(1.2),(2.1),(3.3),(4.3),(5.2),(6.1)\},\ \ \ \{(1.2),(2.3),(3.1),(4.1),(5.3),(6.2)\},\\&\{(1.2),(2.3),(3.1),(4.2),(5.1),(6.3)\},\ \ \ \{(1.2),(2.3),(3.1),(4.3),(5.2),(6.1)\},\\&\{(1.3),(2.1),(3.2),(4.1),(5.3),(6.2)\},\ \ \ \{(1.3),(2.1),(3.2),(4.2),(5.1),(6.3)\},\\&\{(1.3),(2.1),(3.2),(4.3),(5.2),(6.1)\},\ \ \ \{(1.3),(2.2),(3.1),(4.1),(5.3),(6.2)\},\\&\{(1.3),(2.2),(3.1),(4.2),(5.3),(6.1)\},\ \ \ \{(1.3),(2.2),(3.1),(4.3),(5.1),(6.2)\},\\&\{(1.1),(2.2),(3.3),(4.1),(5.2),(6.3)\},\ \ \ \{(1.1),(2.2),(3.3),(4.1),(5.3),(6.2)\},\\&\{(1.1),(2.2),(3.3),(4.2),(5.1),(6.3)\},\ \ \ \{(1.1),(2.2),(3.3),(4.2),(5.3),(6.1)\},\\&\{(1.1),(2.2),(3.3),(4.3),(5.1),(6.2)\},\ \ \ \{(1.1),(2.2),(3.3),(4.3),(5.2),(6.1)\},\\&\{(1.1),(2.3),(3.2),(4.1),(5.2),(6.3)\},\ \ \ \{(1.1),(2.3),(3.2),(4.1),(5.3),(6.2)\},\\&\{(1.2),(2.1),(3.3),(4.1),(5.2),(6.3)\},\ \ \ \{(1.2),(2.1),(3.3),(4.2),(5.1),(6.3)\},\\&\{(1.2),(2.3),(3.1),(4.1),(5.2),(6.3)\},\ \ \ \{(1.2),(2.3),(3.1),(4.2),(5.3),(6.1)\},\\&\{(1.3),(2.1),(3.2),(4.1),(5.2),(6.3)\},\ \ \ \{(1.3),(2.1),(3.2),(4.3),(5.1),(6.2)\},\\&\{(1.3),(2.2),(3.1),(4.1),(5.2),(6.3)\},\ \ \ \{(1.3),(2.2),(3.1),(4.3),(5.2),(6.1)\},\\&\{(1.2),(2.3),(3.1),(4.3),(5.1),(6.2)\},\ \ \ \{(1.3),(2.1),(3.2),(4.2),(5.3),(6.1)\}. \end{aligned}$$

It is readily checked that none of the first 18 subcases satisfies the condition (i) in this theorem. For example, consider the subcase \(\{(1.3),(2.2),(3.1),(4.2),(5.1),(6.3)\}\), that is,

$$\begin{aligned} (1.3) \ c_3=e_3; \ (2.2) \ b_2 = e_2; \ (3.1) \ a_1 = e_1;\ (4.2) \ c_2=f_2; \ (5.1) \ b_1 = f_1; \ (6.3) \ a_3 = f_3. \end{aligned}$$

Then the corresponding subcode can be written as follows.

$$\begin{aligned} \left( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c@{\quad }c@{\quad }c} a_{1} &{} b_{1} &{} c_{1} &{} c_{1} &{} a_{1} &{} b_{1}\\ a_{2} &{} b_{2} &{} c_{2} &{} b_{2} &{} b_{2} &{} c_{2}\\ a_{3} &{} b_{3} &{} c_{3} &{} a_{3} &{} c_{3} &{} a_{3} \end{array}\right) \end{aligned}$$

where \(\mathbf{e}=(a_{1},b_{2},c_{3})^T\) and \(\mathbf{f}=(b_{1},c_{2},a_{3})^T\). Obviously, \(\mathbf{b}\in {\mathsf{desc}}(\{\mathbf{e},\mathbf{f}\})\) holds since \(b_{3}\in \{a_3,c_3\}\). This is a contradiction to the definition of a 2-FPC because of the assumption \(\mathbf{b}\not \in \{\mathbf{e},\mathbf{f}\}\). It is also easy to check that none of the next 16 subcases satisfies the condition that \(|B|=3\). Finally the remaining 2 subcases correspond to the forbidden configuration in (2).

The proof is complete.\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, M., Jiang, J., Li, H. et al. Bounds and constructions for \({\overline{3}}\)-separable codes with length 3. Des. Codes Cryptogr. 81, 317–335 (2016). https://doi.org/10.1007/s10623-015-0160-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-015-0160-9

Keywords

Mathematics Subject Classification

Navigation