Skip to main content
Log in

Fourier-reflexive partitions and MacWilliams identities for additive codes

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

A partition of a finite abelian group gives rise to a dual partition on the character group via the Fourier transform. Properties of this dualization are investigated, and a convenient test is given for when the bidual partition coincides with the primal partition. Such partitions permit MacWilliams identities for the partition enumerators of additive codes. It is shown that dualization commutes with taking products and symmetrized products of partitions on cartesian powers of the given group. After translating the results to Frobenius rings, which are identified with their character module, the approach is applied to partitions that arise from poset structures

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The author is grateful to the anonymous reviewer for suggesting this line of proof.

  2. In [9, 43], the authors use a reversed inner dot product. This results in the partition \({\mathcal P}_{{\mathbf P}}\) being self-dual, and no dual poset is needed.

References

  1. Barra A., Gluesing-Luerssen H.: MacWilliams extension theorems and the local-global property for codes over Frobenius rings. Preprint, submitted. arXiv:1307.7159v1 (2013).

  2. Brualdi R.A., Graves J., Lawrence K.M.: Codes with a poset metric. Discret. Math. 147, 57–72 (1995).

    Google Scholar 

  3. Byrne E., Greferath M., O’Sullivan M.E.: The linear programming bound for codes over finite Frobenius rings. Des. Codes Cryptogr. 42, 289–301 (2007).

    Google Scholar 

  4. Camion P.: Codes and association schemes. In: Pless V.S., Huffman W.C. (eds.) Handbook of Coding Theory, vol. II, pp. 1441–1566. Elsevier, Amsterdam (1998).

  5. Claasen H.L., Goldbach R.W.: A field-like property of finite rings. Indag. Math. 3, 11–26 (1992).

    Google Scholar 

  6. Delsarte P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. 10, 1–97 (1973).

    Google Scholar 

  7. Delsarte P.: Bilinear forms over a finite field, with applications to coding theory. J. Comb. Theory Ser. A 25, 226–241 (1978).

    Google Scholar 

  8. Delsarte P., Levenshtein V.: Association schemes and coding theory. IEEE Trans. Inf. Theory 44, 2477–2504 (1998).

    Google Scholar 

  9. Dougherty S., Skriganov M.: MacWilliams duality and the Rosenbloom–Tsfasman metric. Moscow Math. J. 2(1), 81–97 (2002).

    Google Scholar 

  10. El-Khamy M., McEliece R.J.: The partition weight enumerator of MDS codes and its applications. In: Proceedings of the IEEE International Symposium on Information Theory (ISIT 2005), Adelaide, Australia, pp. 926–930 (2005).

  11. Forney Jr., G.D.: Transforms and groups. In: Vardy A. (ed.) Codes, Curves and Signals: Common Threads in Communications, pp. 79–97. Kluwer, Boston (1998).

  12. Ganesan A., Vontobel P.: Vontobel. On the existence of universally decodable matrices. IEEE Trans. Inf. Theory 53, 2572–2575 (2007).

  13. Gluesing-Luerssen H.: Partitions of Frobenius rings induced by the homogeneous weight. Preprint, accepted for publication in Adv. Math. Commun. arXiv:1304.6589v1 (2013).

  14. Gluesing-Luerssen H.: On MacWilliams identities for codes over rings. In: Hüper, K., Trumpf, J. (eds.) Mathematical System Theory—Festschrift in Honor of Uwe Helmke on the Occasion of his Sixtieth Birthday, pp. 167–182. CreateSpace, Scotts Valley (2013).

  15. Godsil C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993).

  16. Hammons A.R., Kumar P.V., Calderbank A.R., Sloane N.J.A., Solé P.: The \({\mathbb{z}}_4\)-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 40, 301–319 (1994).

    Google Scholar 

  17. Hirano Y.: On admissible rings. Indag. Math. 8, 55–59 (1997).

    Google Scholar 

  18. Honold T.: Characterization of finite Frobenius rings. Arch. Math. 76, 406–415 (2001).

    Google Scholar 

  19. Honold T.: Two-Intersection sets in projective Hjelmslev spaces. In: Proceedings of the 19th International Symposium on the Mathematical Theory of Networks and Systems, pp. 1807–1813, Budapest, Hungary (2010).

  20. Honold T., Landjev I.: Linear codes over finite chain rings. Electron. J. Comb. 7 (2000).

  21. Honold T., Landjev I.: MacWilliams identities for linear codes over finite Frobenius rings. In: Jungnickel D., Niederreiter H. (eds.) Proceedings of the Fifth International Conference on Finite Fields and Applications Fq5 (Augsburg 1999), pp. 276–292. Springer, Berlin (2001).

  22. Huffman C.: On the theory of \({\mathbb{F}}_q\)-linear \({\mathbb{F}}_{q^t}\)-codes. Adv. Math. Commun. 7, 349–378 (2013).

  23. Huffman W.C., Pless V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, Cambridge (2003).

  24. Kim D.: Dual MacWilliams pair. IEEE Trans. Inf. Theory 51, 2901–2905 (2005).

    Google Scholar 

  25. Kim H., Oh D.: A classification of posets admitting the MacWilliams identity. IEEE Trans. Inf. Theory 51, 1424—1431 (2005).

  26. Klemm M.: Über die Identität von MacWilliams für die Gewichtsfunktion von Codes. Arch. Math. (Basel) 49, 400–406 (1987).

    Google Scholar 

  27. Klemm M.: Selbstduale Codes über dem Ring der ganzen Zahlen modulo \(4\). Arch. Math . (Basel) 53, 201–207 (1989).

    Google Scholar 

  28. Lam T.Y.: Lectures on Modules and Rings. Graduate Text in Mathematics, vol. 189. Springer, Berlin (1999).

  29. Lamprecht E.: Über I-reguläre Ringe, reguläre Ideale and Erklärungsmoduln. I. Math. Nachr. 10, 353–382 (1953).

    Google Scholar 

  30. Landjev I.: A note on the MacWilliams identities. Compt. Rend. Bulg. Acad. Sci. 52 (1999).

  31. Lu H., Kumar P.V., Yang E.: On the input-output weight enumerators of product accumulate codes. IEEE Commun. Lett. 8, 520–522 (2004).

    Google Scholar 

  32. MacWilliams F.J.: Combinatorial problems of elementary abelian groups. Ph.D. Thesis, Harvard University (1962).

  33. MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam (1977).

  34. Nechaev A.A.: Linear codes over modules and over spaces: MacWilliams identities. In: Proceedings of the 1996 IEEE International Symposium on Information Theory and Application, Victoria, BC, Canada, pp. 35–38 (1999).

  35. Nechaev A.A., Kuzmin A.S.: Formal duality of linearly presentable codes over a Galois field. In: Mora T., Mattson H. (eds.) Applied Algebra, Algebraic Algorithms and Error-Correcting Codes. Lecture Notes in Computer Science, vol. 1255, pp. 263–276. Springer, Berlin (1997).

  36. Niederreiter H.: A combinatorial problem for vector spaces over finite fields. Discret. Math. 96, 221–228 (1991).

    Google Scholar 

  37. Park W., Barg A.: Linear ordered codes, shape enumerators and parallel channels. In: 48th Annual Allerton Conference on Communication, Control, and Computing, Allerton, pp. 361–367 (2010).

  38. Pinheiro J., Firer M.: Classification of poset-block spaces admitting MacWilliams type identity. IEEE Trans. Inf. Theory 58, 7246–7252 (2012).

    Google Scholar 

  39. Rosenbloom M., Tsfasman M.: Codes for the \(m\)-metric. Problemy Peredachi Informatsii 33(1), 55–63 (1997).

  40. Simonis J.: MacWilliams identities and coordinate positions. Lin. Algebra Appl. 216, 81–91 (1995).

    Google Scholar 

  41. Stanley R.P.: Enumerative Combinatorics, vol. I. Cambridge University Press, Cambridge (1997).

  42. Terras A.: Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43. Cambridge University Press, Cambridge (1999).

  43. Trinker H.: A simple derivation of the MacWilliams identity for linear ordered codes and orthogonal arrays. Des. Codes Cryptogr. 50, 229–234 (2009).

    Google Scholar 

  44. van Lint J.H. Introduction to Coding Theory, 3rd edn. Springer, Berlin (1999).

  45. Wood J.A.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999).

    Google Scholar 

  46. Yang S.: Second-order weight distributions. IEEE Trans. Inf. Theory 57, 6068–6077 (2011).

    Google Scholar 

  47. Zinoviev V.A., Ericson T.: On Fourier invariant partitions of finite abelian groups and the MacWilliams identity for group codes. Probl. Inf. Transm. 32, 117–122 (1996).

    Google Scholar 

  48. Zinoviev V.A., Ericson T.: Fourier invariant pairs of partitions of finite abelian groups and association schemes. Probl. Inf. Transm. 45, 221–231 (2009).

    Google Scholar 

Download references

Acknowledgments

The author was partially supported by the National Science Foundation grants #DMS-0908379 and #DMS-1210061. I would like to thank Marcus Greferath and Navin Kashyap for very inspiring suggestions concerning this research project. A major part of the final write-up took place during a research stay at the University of Zürich, and I am grateful to Joachim Rosenthal and his research group for the generous hospitality. I also would like to thank the anonymous reviewers for very helpful suggestions, in particular with respect to the proof of Theorem 3.3(b).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heide Gluesing-Luerssen.

Additional information

Communicated by V. A. Zinoviev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gluesing-Luerssen, H. Fourier-reflexive partitions and MacWilliams identities for additive codes. Des. Codes Cryptogr. 75, 543–563 (2015). https://doi.org/10.1007/s10623-014-9940-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-9940-x

Keywords

Mathematics Subject Classification

Navigation