Skip to main content
Log in

A new family of tight sets in \({\mathcal {Q}}^{+}(5,q)\)

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this paper, we describe a new infinite family of \(\frac{q^{2}-1}{2}\)-tight sets in the hyperbolic quadrics \({\mathcal {Q}}^{+}(5,q)\), for \(q \equiv 5 \text{ or } 9 \,\hbox {mod}\,{12}\). Under the Klein correspondence, these correspond to Cameron–Liebler line classes of \(\mathop {\mathrm{PG}}(3,q)\) having parameter \(\frac{q^{2}-1}{2}\). This is the second known infinite family of nontrivial Cameron–Liebler line classes, the first family having been described by Bruen and Drudge with parameter \(\frac{q^{2}+1}{2}\) in \(\mathop {\mathrm{PG}}(3,q)\) for all odd \(q\). The study of Cameron–Liebler line classes is closely related to the study of symmetric tactical decompositions of \(\mathop {\mathrm{PG}}(3,q)\) (those having the same number of point classes as line classes). We show that our new examples occur as line classes in such a tactical decomposition when \(q \equiv 9 \,\hbox {mod}\,12\) (so \(q = 3^{2e}\) for some positive integer \(e\)), providing an infinite family of counterexamples to a conjecture made by Cameron and Liebler (in Linear Algebra Appl 46, 91–102, 1982); the nature of these decompositions allows us to also prove the existence of a set of type \(\left( \frac{1}{2}(3^{2e}-3^{e}), \frac{1}{2}(3^{2e}+3^{e}) \right) \) in the affine plane \(\mathop {\mathrm{AG}}(2,3^{2e})\) for all positive integers \(e\). This proves a conjecture made by Rodgers in his Ph.D. thesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bamberg J., Penttila T.: Overgroups of cyclic Sylow subgroups of linear groups. Commun. Algebra 36(7), 2503–2543 (2008).

  2. Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and \(m\)-ovoids of finite polar spaces. J. Comb. Theory Ser. A 114(7), 1293–1314 (2007).

  3. Berndt B.C., Evans R.J., Williams K.S.: Gauss and Jacobi Sums. Wiley, New York (1998).

  4. Beukemann L., Metsch K.: Small tight sets of hyperbolic quadrics. Des. Codes Cryptogr. 68(1–3), 11–24 (2013).

  5. Bruen A.A., Drudge K.: The construction of Cameron–Liebler line classes in \({\rm PG} (3, q)\). Finite Fields Appl. 5(1), 35–45 (1999).

  6. Cameron P.J., Liebler R.A.: Tactical decompositions and orbits of projective groups. Linear Algebra Appl. 46, 91–102 (1982).

  7. De Beule J., Hallez A., Storme L.: A non-existence result on Cameron–Liebler line classes. J. Comb. Des. 16(4), 342–349 (2008).

  8. De Beule J., Govaerts P., Hallez A., Storme L.: Tight sets, weighted \(m\)-covers, weighted \(m\)-ovoids, and minihypers. Des. Codes Cryptogr. 50(2), 187–201 (2009).

  9. Drudge K.: On a conjecture of Cameron and Liebler. Eur. J. Comb. 20(4), 263–269 (1999).

  10. Feng T., Momihara K., Xiang Q.: Cameron–Liebler line classes with parameter \(x = \frac{q^{2}1}{2}\). Preprint. arXiv:1406.6526.

  11. Gavrilyuk A.L., Metsch K.: A modular equality for Cameron–Liebler line classes. J. Comb. Theory Ser. A 127, 224–242 (2014).

  12. Gavrilyuk A.L., Mogilnykh I.Y.: Cameron–Liebler line classes in \({\rm PG}(n, 4)\). Des. Codes Cryptogr. 1–14 (2013).

  13. Govaerts P., Penttila T.: Cameron–Liebler line classes in \({\rm PG}(3,4)\). Bull. Belgian Math. Soc. Simon Stevin 12(5), 793–804 (2005).

  14. Govaerts P., Storme L.: On Cameron–Liebler line classes. Adv. Geom. 4(3), 279–286 (2004).

  15. Haemers W.H.: Interlacing eigenvalues and graphs. Linear Algebra Appl. 226–228, 593–616 (1995).

  16. Hirschfeld J.: Projective Geometries over Finite Fields (Oxford Mathematical Monographs), 2nd edn. Oxford University Press, Oxford (1998).

  17. Lidl R., Niederreiter H.: Finite Fields. Cambridge University Press, Cambridge (1997).

  18. Metsch K.: The non-existence of Cameron–Liebler line classes with parameter \(2 < x \le q\). Bull. Lond. Math. Soc. 42(6), 991–996 (2010).

  19. Metsch K.: An improved bound on the existence of Cameron–Liebler line classes. J. Comb. Theory Ser. A 121, 89–93 (2014).

  20. Payne S.: Tight pointsets in finite generalized quadrangles. Congr. Numer. 60, 243–260 (1987).

  21. Penttila T.: Cameron–Liebler line classes in \({\rm PG}(3, q)\). Geom. Dedicata 37(3), 245–252 (1991).

  22. Penttila T., Royle G.F.: Sets of type \((m, n)\) in the affine and projective planes of order nine. Des. Codes Cryptogr. 6(3), 229–245 (1995).

  23. Rodgers M.: On some new examples of Cameron–Liebler line classes. PhD Thesis, University of Colorado Denver (2012).

  24. Rodgers M.: Cameron–Liebler line classes. Des. Codes Cryptogr. 68(1–3), 33–37 (2013).

  25. Tee G.: Eigenvectors of block circulant and alternating circulant matrices. N. Z. J. Math. 36, 195–211 (2007).

Download references

Acknowledgments

J. De Beule is a postdoctoral fellow of the Research Foundation Flanders—Belgium (FWO). J. Demeyer has been supported as a postdoctoral fellow of the Research Foundation Flanders—Belgium (FWO). The research of M. Rodgers has been supported partially by the FWO Project “Moufang verzamelingen” G.0140.09

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgan Rodgers.

Additional information

Communicated by D. Jungnickel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Beule, J., Demeyer, J., Metsch, K. et al. A new family of tight sets in \({\mathcal {Q}}^{+}(5,q)\) . Des. Codes Cryptogr. 78, 655–678 (2016). https://doi.org/10.1007/s10623-014-0023-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-014-0023-9

Keywords

Mathematics Subject Classification

Navigation