Skip to main content

Advertisement

Log in

The Molecular Pathogenesis of Colorectal Cancer and Its Potential Application to Colorectal Cancer Screening

  • Review
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Introduction

Advances in our understanding of the molecular genetics and epigenetics of colorectal cancer have led to novel insights into the pathogenesis of this common cancer. These advances have revealed that there are molecular subtypes of colon polyps and colon cancer and that these molecular subclasses have unique and discrete clinical and pathological features. Although the molecular characterization of these subgroups of colorectal polyps and cancer is only partially understood at this time, it does appear likely that classifying colon polyps and cancers based on their genomic instability and/or epigenomic instability status will eventually be useful for informing approaches for the prevention and early detection of colon polyps and colorectal cancer.

Conclusions

In this review, we will discuss our current understanding of the molecular pathogenesis of the polyp to cancer sequence and the potential to use this information to direct screening and prevention programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Vogelstein B, Fearon E, Hamilton S, et al. Genetic alterations during colorectal-tumor development. N Engl J Med. 1988;319:525–532.

    CAS  PubMed  Google Scholar 

  2. Goldstein NS. Serrated pathway and APC (conventional)-type colorectal polyps: molecular-morphologic correlations, genetic pathways, and implications for classification. Am J Clin Pathol. 2006;125:146–153.

    CAS  PubMed  Google Scholar 

  3. Jass JR. Hyperplastic polyps and colorectal cancer: is there a link? Clin Gastroenterol Hepatol. 2004;2:1–8.

    PubMed  Google Scholar 

  4. Bettington M, Walker N, Clouston A, et al. The serrated pathway to colorectal carcinoma: current concepts and challenges. Histopathology. 2013;62:367–386.

    PubMed  Google Scholar 

  5. Baker K, Zhang Y, Jin C, et al. Proximal versus distal hyperplastic polyps of the colorectum: different lesions or a biological spectrum? J Clin Pathol. 2004;57:1089–1093.

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Burnett-Hartman AN, Newcomb PA, Potter JD, et al. Genomic aberrations occurring in subsets of serrated colorectal lesions but not conventional adenomas. Cancer Res. 2013;73:2863–2872.

    CAS  PubMed  Google Scholar 

  7. Noffsinger AE. Serrated polyps and colorectal cancer: new pathway to malignancy. Annu Rev Pathol. 2009;4:343–364.

    CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70.

    CAS  PubMed  Google Scholar 

  9. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144:646–674.

    CAS  PubMed  Google Scholar 

  10. Little MP, Vineis P, Li G. A stochastic carcinogenesis model incorporating multiple types of genomic instability fitted to colon cancer data. J Theor Biol. 2008;254:229–238.

    PubMed  Google Scholar 

  11. Grady WM, Carethers JM. Genomic and epigenetic instability in colorectal cancer pathogenesis. Gastroenterology. 2008;135:1079–1099.

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Brennan CW, Verhaak RG, McKenna A, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155:462–477.

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Walther A, Johnstone E, Swanton C, et al. Genetic prognostic and predictive markers in colorectal cancer. Nat Rev Cancer. 2009;9:489–499.

    CAS  PubMed  Google Scholar 

  14. Walther A, Houlston R, Tomlinson I. Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut. 2008;57:941–950.

    CAS  PubMed  Google Scholar 

  15. Wang WL, Huang HC, Kao SH, et al. Slug is temporally regulated by cyclin E in cell cycle and controls genome stability. Oncogene. 2014. doi:10.1038/onc.2014.58.

  16. Geigl JB, Obenauf AC, Schwarzbraun T, et al. Defining ‘chromosomal instability’. Trends Genet. 2008;24:64–69.

    CAS  PubMed  Google Scholar 

  17. Shin HJ, Baek KH, Jeon AH, et al. Dual roles of human BubR1, a mitotic checkpoint kinase, in the monitoring of chromosomal instability. Cancer Cell. 2003;4:483–497.

    CAS  PubMed  Google Scholar 

  18. Anderhub SJ, Kramer A, Maier B. Centrosome amplification in tumorigenesis. Cancer Lett. 2012;322:8–17.

    CAS  PubMed  Google Scholar 

  19. Roger L, Jones RE, Heppel NH, et al. Extensive telomere erosion in the initiation of colorectal adenomas and its association with chromosomal instability. J Natl Cancer Inst. 2013;105:1202–1211.

    CAS  PubMed  Google Scholar 

  20. Gilad O, Nabet BY, Ragland RL, et al. Combining ATR suppression with oncogenic Ras synergistically increases genomic instability, causing synthetic lethality or tumorigenesis in a dosage-dependent manner. Cancer Res. 2010;70:9693–9702.

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Maley CC, Galipeau PC, Finley JC, et al. Genetic clonal diversity predicts progression to esophageal adenocarcinoma. Nat Genet. 2006;38:468–473.

    CAS  PubMed  Google Scholar 

  22. Hermsen M, Postma C, Baak J, et al. Colorectal adenoma to carcinoma progression follows multiple pathways of chromosomal instability. Gastroenterology. 2002;123:1109–1119.

    CAS  PubMed  Google Scholar 

  23. Grady WM. Genomic instability and colon cancer. Cancer Metastas Rev. 2004;23:11–27.

    CAS  Google Scholar 

  24. Boland C, Thibodeau S, Hamilton S, et al. A National Cancer Institute workshop on microsatellite instability for cancer detection and familial predisposition: development of international criteria for the determinate of microsatellite instability in colorectal cancer. Cancer Res. 1998;58:5248–5257.

    CAS  PubMed  Google Scholar 

  25. Bacher JW, Flanagan LA, Smalley RL, et al. Development of a fluorescent multiplex assay for detection of MSI-high tumors. Dis Markers. 2004;20:237–250.

    PubMed Central  PubMed  Google Scholar 

  26. Baron JA, Cole BF, Sandler RS, et al. A randomized trial of aspirin to prevent colorectal adenomas. N Engl J Med. 2003;348:891–899.

    CAS  PubMed  Google Scholar 

  27. Popat S, Hubner R, Houlston RS. Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 2005;23:609–618.

    CAS  PubMed  Google Scholar 

  28. Fallik D, Borrini F, Boige V, et al. Microsatellite instability is a predictive factor of the tumor response to irinotecan in patients with advanced colorectal cancer. Cancer Res. 2003;63:5738–5744.

    CAS  PubMed  Google Scholar 

  29. Jo WS, Carethers JM. Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark. 2006;2:51–60.

    CAS  PubMed  Google Scholar 

  30. Sargent D, Marsoni S, Thibodeau SN, et al. Confirmation of deficient mismatch repair (dMMR) as a predictive marker for lack of benefit from 5-FU based chemotherapy in stage II and III colon cancer (CC): a pooled molecular reanalysis of randomized chemotherapy trials. J Clin Oncol. 2008;26:Abstr. 4008.

    Google Scholar 

  31. O’Brien MJ, Yang S, Mack C, et al. Comparison of microsatellite instability, CpG island methylation phenotype, BRAF and KRAS status in serrated polyps and traditional adenomas indicates separate pathways to distinct colorectal carcinoma end points. Am J Surg Pathol. 2006;30:1491–1501.

    PubMed  Google Scholar 

  32. Inoue A, Okamoto K, Fujino Y, et al. B-RAF mutation and accumulated gene methylation in aberrant crypt foci (ACF), sessile serrated adenoma/polyp (SSA/P) and cancer in SSA/P. Br J Cancer. 2014. doi:10.1038/bjc.2014.545.

  33. Toiyama Y, Hur K, Tanaka K, et al. Serum miR-200c is a novel prognostic and metastasis-predictive biomarker in patients with colorectal cancer. Ann Surg. 2014;259:735–743.

    PubMed  Google Scholar 

  34. Calabrese P, Tsao JL, Yatabe Y, et al. Colorectal pretumor progression before and after loss of DNA mismatch repair. Am J Pathol. 2004;164:1447–1453.

    PubMed Central  CAS  PubMed  Google Scholar 

  35. Ricciardone MD, Ozcelik T, Cevher B, et al. Human MLH1 deficiency predisposes to hematological malignancy and neurofibromatosis type 1. Cancer Res. 1999;59:290–293.

    CAS  PubMed  Google Scholar 

  36. Kane M, Loda M, Gaida G, et al. Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res. 1997;57:808–811.

    CAS  PubMed  Google Scholar 

  37. Domingo E, Laiho P, Ollikainen M, et al. BRAF screening as a low-cost effective strategy for simplifying HNPCC genetic testing. J Med Genet. 2004;41:664–668.

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Wang L, Cunningham JM, Winters JL, et al. BRAF mutations in colon cancer are not likely attributable to defective DNA mismatch repair. Cancer Res. 2003;63:5209–5212.

    CAS  PubMed  Google Scholar 

  39. Suzuki H, Igarashi S, Nojima M, et al. IGFBP7 is a p53-responsive gene specifically silenced in colorectal cancer with CpG island methylator phenotype. Carcinogenesis. 2010;31:342–349.

    CAS  PubMed  Google Scholar 

  40. Toyota M, Ahuja N, Ohe-Toyota M, et al. CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci USA. 1999;96:8681–8686.

    PubMed Central  CAS  PubMed  Google Scholar 

  41. Issa JP, Shen L, Toyota M. CIMP, at last. Gastroenterology. 2005;129:1121–1124.

    CAS  PubMed  Google Scholar 

  42. Issa JP. Aging and epigenetic drift: a vicious cycle. J Clin Invest. 2014;124:24–29.

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Tahara T, Yamamoto E, Madireddi P, et al. Colorectal carcinomas with CpG island methylator phenotype 1 frequently contain mutations in chromatin regulators. Gastroenterology. 2014;146:530–538 e5.

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Bachman KE, Park BH, Rhee I, et al. Histone modifications and silencing prior to DNA methylation of a tumor suppressor gene. Cancer Cell. 2003;3:89–95.

    CAS  PubMed  Google Scholar 

  45. Hinshelwood RA, Melki JR, Huschtscha LI, et al. Aberrant de novo methylation of the p16INK4A CpG island is initiated post gene silencing in association with chromatin remodelling and mimics nucleosome positioning. Hum Mol Genet. 2009;18:3098–3109.

    CAS  PubMed  Google Scholar 

  46. Limsui D, Vierkant RA, Tillmans LS, et al. Cigarette smoking and colorectal cancer risk by molecularly defined subtypes. J Natl Cancer Inst. 2010;102:1012–1022.

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Ichimura K. Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol. 2012;29:131–139.

    CAS  PubMed  Google Scholar 

  48. The Cancer Genome Atlas Research Network*. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455:1061–1068.

  49. Bredel M, Scholtens DM, Harsh GR, et al. A network model of a cooperative genetic landscape in brain tumors. JAMA. 2009;302:261–275.

    CAS  PubMed  Google Scholar 

  50. Hinoue T, Weisenberger DJ, Pan F, et al. Analysis of the association between CIMP and BRAF in colorectal cancer by DNA methylation profiling. PLoS One. 2009;4:e8357.

    PubMed Central  PubMed  Google Scholar 

  51. Nosho K, Irahara N, Shima K, et al. Comprehensive biostatistical analysis of CpG island methylator phenotype in colorectal cancer using a large population-based sample. PLoS One. 2008;3:e3698.

    PubMed Central  PubMed  Google Scholar 

  52. Weisenberger DJ, Siegmund KD, Campan M, et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet. 2006;38:787–793.

    CAS  PubMed  Google Scholar 

  53. Barault L, Charon-Barra C, Jooste V, et al. Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases. Cancer Res. 2008;68:8541–8546.

    CAS  PubMed  Google Scholar 

  54. Shen L, Toyota M, Kondo Y, et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci USA. 2007;104:18654–18659.

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Shiovitz S, Bertagnolli MM, Renfro LA, et al. CpG island methylator phenotype is associated with response to adjuvant irinotecan-based therapy for stage 3 colon cancer. Gastroenterology. 2014;111(3):598–602.

  56. Iacopetta B, Kawakami K, Watanabe T. Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: is the CpG island methylator phenotype the 5-fluorouracil-responsive subgroup? Int J Clin Oncol. 2008;13:498–503.

    CAS  PubMed  Google Scholar 

  57. Imperiale TF, Ransohoff DF, Itzkowitz SH, et al. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370:1287–1297.

    CAS  PubMed  Google Scholar 

  58. Chen WD, Han ZJ, Skoletsky J, et al. Detection in fecal DNA of colon cancer-specific methylation of the nonexpressed vimentin gene. J Natl Cancer Inst. 2005;97:1124–1132.

    CAS  PubMed  Google Scholar 

  59. Itzkowitz S, Brand R, Jandorf L, et al. A simplified, noninvasive stool DNA test for colorectal cancer detection. Am J Gastroenterol. 2008;103:2862–2870.

    PubMed  Google Scholar 

  60. Matsuzaki K, Deng G, Tanaka H, et al. The relationship between global methylation level, loss of heterozygosity, and microsatellite instability in sporadic colorectal cancer. Clin Cancer Res. 2005;11:8564–8569.

    CAS  PubMed  Google Scholar 

  61. Rodriguez J, Frigola J, Vendrell E, et al. Chromosomal instability correlates with genome-wide DNA demethylation in human primary colorectal cancers. Cancer Res. 2006;66:8462–9468.

    CAS  PubMed  Google Scholar 

  62. Hur K, Cejas P, Feliu J, et al. Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut. 2014;63(4):635–646.

  63. Karpf AR, Matsui S. Genetic disruption of cytosine DNA methyltransferase enzymes induces chromosomal instability in human cancer cells. Cancer Res. 2005;65:8635–8639.

    CAS  PubMed  Google Scholar 

  64. Doege CA, Inoue K, Yamashita T, et al. Early-stage epigenetic modification during somatic cell reprogramming by Parp1 and Tet2. Nature. 2012;488:652–655.

    CAS  PubMed  Google Scholar 

  65. Dulak AM, Stojanov P, Peng S, et al. Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nat Genet. 2013;45:478–486.

    CAS  PubMed  Google Scholar 

  66. Ogino S, Kawasaki T, Nosho K, et al. LINE-1 hypomethylation is inversely associated with microsatellite instability and CpG island methylator phenotype in colorectal cancer. Int J Cancer. 2008;122:2767–2773.

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Pino MS, Chung DC. The chromosomal instability pathway in colon cancer. Gastroenterology. 2010;138:2059–2072.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Aaltonen LA, Peltomaki P, Mecklin JP, et al. Replication errors in benign and malignant tumors from hereditary nonpolyposis colorectal cancer patients. Cancer Res. 1994;54:1645–1648.

    CAS  PubMed  Google Scholar 

  69. Jacoby R, Marshall D, Kailas S, et al. Genetic instability associated with adenoma to carcinoma progression in hereditary nonpolyposis colon cancer. Gastroenterology. 1995;109:73–82.

    CAS  PubMed  Google Scholar 

  70. Bomme L, Bardi G, Pandis N, et al. Cytogenetic analysis of colorectal adenomas: karyotypic comparisons of synchronous tumors. Cancer Genet Cytogenet. 1998;106:66–71.

    CAS  PubMed  Google Scholar 

  71. Ried T, Heselmeyer-Haddad K, Blegen H, et al. Genomic changes defining the genesis, progression, and malignancy potential in solid human tumors: a phenotype/genotype correlation. Genes Chromosom Cancer. 1999;25:195–204.

    CAS  PubMed  Google Scholar 

  72. Stoler DL, Chen N, Basik M, et al. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci USA. 1999;96:15121–15126.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Meijer GA, Hermsen MA, Baak JP, et al. Progression from colorectal adenoma to carcinoma is associated with non- random chromosomal gains as detected by comparative genomic hybridisation. J Clin Pathol. 1998;51:901–909.

    PubMed Central  CAS  PubMed  Google Scholar 

  74. Jones AM, Thirlwell C, Howarth KM, et al. Analysis of copy number changes suggests chromosomal instability in a minority of large colorectal adenomas. J Pathol. 2007;213:249–256.

    CAS  PubMed  Google Scholar 

  75. Shih IM, Zhou W, Goodman SN, et al. Evidence that genetic instability occurs at an early stage of colorectal tumorigenesis. Cancer Res. 2001;61:818–822.

    CAS  PubMed  Google Scholar 

  76. Neuville A, Nicolet C, Meyer N, et al. Histologic characteristics of non-microsatellite-instable colon adenomas correlate with distinct molecular patterns. Hum Pathol. 2011;42:244–253.

    CAS  PubMed  Google Scholar 

  77. Leslie A, Stewart A, Baty DU, et al. Chromosomal changes in colorectal adenomas: relationship to gene mutations and potential for clinical utility. Genes Chromosom Cancer. 2006;45:126–135.

    CAS  PubMed  Google Scholar 

  78. Nowak MA, Komarova NL, Sengupta A, et al. The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA. 2002;21:21.

    Google Scholar 

  79. Lengauer C, Kinzler KW, Vogelstein B. Genetic instability in colorectal cancers. Nature. 1997;386:623–627.

    CAS  PubMed  Google Scholar 

  80. Fodde R, Kuipers J, Rosenberg C, et al. Mutations in the APC tumour suppressor gene cause chromosomal instability. Nat Cell Biol. 2001;3:433–438.

    CAS  PubMed  Google Scholar 

  81. Kaplan KB, Burds AA, Swedlow JR, et al. A role for the adenomatous polyposis coli protein in chromosome segregation. Nat Cell Biol. 2001;3:429–432.

    CAS  PubMed  Google Scholar 

  82. Spirio LN, Samowitz W, Robertson J, et al. Alleles of APC modulate the frequency and classes of mutations that lead to colon polyps. Nat Genet. 1998;20:385–388.

    CAS  PubMed  Google Scholar 

  83. Kim KM, Lee EJ, Ha S, et al. Molecular features of colorectal hyperplastic polyps and sessile serrated adenoma/polyps from Korea. Am J Surg Pathol. 2011;35:1274–1286.

    PubMed  Google Scholar 

  84. Beggs AD, Domingo E, Abulafi M, et al. A study of genomic instability in early preneoplastic colonic lesions. Oncogene. 2013;32:5333–5337.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Winawer S, Fletcher R, Rex D, et al. Colorectal cancer screening and surveillance: clinical guidelines and rationale—update based on new evidence. Gastroenterology. 2003;124:544–560.

    PubMed  Google Scholar 

  86. Pedroni M, Tamassia MG, Percesepe A, et al. Microsatellite instability in multiple colorectal tumors. Int J Cancer. 1999;81:1–5.

    CAS  PubMed  Google Scholar 

  87. Zauber P, Huang J, Sabbath-Solitare M, et al. Similarities of molecular genetic changes in synchronous and metachronous colorectal cancers are limited and related to the cancers’ proximities to each other. J Mol Diagn. 2013;15:652–660.

    CAS  PubMed  Google Scholar 

  88. Lawes DA, Pearson T, Sengupta S, et al. Is MSI-H of value in predicting the development of metachronous colorectal cancer? Eur J Cancer. 2006;42:473–476.

    CAS  PubMed  Google Scholar 

  89. Balleste B, Bessa X, Pinol V, et al. Detection of metachronous neoplasms in colorectal cancer patients: identification of risk factors. Dis Colon Rectum. 2007;50:971–980.

    PubMed  Google Scholar 

  90. Lam AK, Chan SS, Leung M. Synchronous colorectal cancer: clinical, pathological and molecular implications. World J Gastroenterol. 2014;20:6815–6820.

    PubMed Central  PubMed  Google Scholar 

  91. Chan AO, Broaddus RR, Houlihan PS, et al. CpG island methylation in aberrant crypt foci of the colorectum. Am J Pathol. 2002;160:1823–1830.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Luo L, Chen W, Pretlow T. CpG island methylation in aberrant crypt foci and cancers from the same patients. Int J Cancer. 2005;115:747–751.

    CAS  PubMed  Google Scholar 

  93. Kim YH, Petko Z, Dzieciatkowski S, et al. CpG island methylation of genes accumulates during the adenoma progression step of the multistep pathogenesis of colorectal cancer. Genes Chromosom Cancer. 2006;45:781–789.

    CAS  PubMed  Google Scholar 

  94. Luo Y, Wong CJ, Kaz AM, et al. Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. Gastroenterology. 2014;147:418–429.

  95. Bettington M, Walker N, Rosty C, et al. Critical appraisal of the diagnosis of the sessile serrated adenoma. Am J Surg Pathol. 2014;38:158–166.

    PubMed  Google Scholar 

  96. Leggett B, Whitehall V. Role of the serrated pathway in colorectal cancer pathogenesis. Gastroenterology. 2010;138:2088–2100.

    CAS  PubMed  Google Scholar 

  97. Lochhead P, Chan AT, Giovannucci E, et al. Progress and opportunities in molecular pathological epidemiology of colorectal premalignant lesions. Am J Gastroenterol. 2014;109:1205–1214.

    PubMed Central  CAS  PubMed  Google Scholar 

  98. Shen L, Kondo Y, Hamilton SR, et al. P14 methylation in human colon cancer is associated with microsatellite instability and wild-type p53. Gastroenterology. 2003;124:626–633.

    CAS  PubMed  Google Scholar 

  99. Luo Y, Yu M, Grady WM. Field cancerization in the colon: a role for aberrant DNA methylation? Gastroenterol Rep (Oxf). 2014;2:16–20.

    Google Scholar 

  100. Worthley DL, Whitehall VL, Buttenshaw RL, et al. DNA methylation within the normal colorectal mucosa is associated with pathway-specific predisposition to cancer. Oncogene. 2010;29:1653–1662.

    CAS  PubMed  Google Scholar 

  101. Messick CA, Kravochuck S, Church JM, et al. Metachronous serrated neoplasia is uncommon after right colectomy in patients with methylator colon cancers with a high degree of microsatellite instability. Dis Colon Rectum. 2014;57:39–46.

    PubMed  Google Scholar 

  102. Shen L, Kondo Y, Rosner GL, et al. MGMT promoter methylation and field defect in sporadic colorectal cancer. J Natl Cancer Inst. 2005;97:1330–1338.

    CAS  PubMed  Google Scholar 

  103. Ahuja N, Li Q, Mohan M, et al. Aging and DNA methylation in colorectal mucosa and cancer. Cancer Res. 1998;58:5489–5494.

    CAS  PubMed  Google Scholar 

  104. Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–995.

    CAS  PubMed  Google Scholar 

  105. Rashid A, Shen L, Morris JS, et al. CpG island methylation in colorectal adenomas. Am J Pathol. 2001;159:1129–1135.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Braakhuis BJ, Tabor MP, Kummer JA, et al. A genetic explanation of Slaughter’s concept of field cancerization: evidence and clinical implications. Cancer Res. 2003;63:1727–1730.

    CAS  PubMed  Google Scholar 

  107. Noreen F, Röösli M, Gaj P, et al. Modulation of age- and cancer-associated DNA methylation change in the healthy colon by aspirin and lifestyle. J Natl Cancer Inst. 2014. doi:10.1093/jnci/dju161.

  108. Tapp HS, Commane DM, Bradburn DM, et al. Nutritional factors and gender influence age-related DNA methylation in the human rectal mucosa. Aging Cell. 2013;12:148–155.

    PubMed Central  CAS  PubMed  Google Scholar 

  109. Hiraoka S, Kato J, Horii J, et al. Methylation status of normal background mucosa is correlated with occurrence and development of neoplasia in the distal colon. Hum Pathol. 2010;41:38–47.

    CAS  PubMed  Google Scholar 

  110. Kawakami K, Ruszkiewicz A, Bennett G, et al. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Br J Cancer. 2006;94:593–598.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Belshaw NJ, Pal N, Tapp HS, et al. Patterns of DNA methylation in individual colonic crypts reveal aging and cancer-related field defects in the morphologically normal mucosa. Carcinogenesis. 2010;31:1158–1163.

    CAS  PubMed  Google Scholar 

  112. Grady WM, Parkin RK, Mitchell PS, et al. Epigenetic silencing of the intronic microRNA hsa-miR-342 and its host gene EVL in colorectal cancer. Oncogene. 2008;27:3880–3888.

    CAS  PubMed  Google Scholar 

  113. Belshaw NJ, Elliott GO, Foxall RJ, et al. Profiling CpG island field methylation in both morphologically normal and neoplastic human colonic mucosa. Br J Cancer. 2008;99:136–142.

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Paun BC, Kukuruga D, Jin Z, et al. Relation between normal rectal methylation, smoking status, and the presence or absence of colorectal adenomas. Cancer. 2010;116:4495–4501.

    PubMed Central  PubMed  Google Scholar 

  115. Kamiyama H, Suzuki K, Maeda T, et al. DNA demethylation in normal colon tissue predicts predisposition to multiple cancers. Oncogene. 2012;31:5029–5037.

    PubMed Central  CAS  PubMed  Google Scholar 

  116. Xu G, Bestor T, Bourc’his D, et al. Chromosome instability and immunodeficiency syndrome caused by mutations in a DNa methyltransferase gene. Nature. 1999;402:187–189.

    CAS  PubMed  Google Scholar 

  117. Figueiredo JC, Grau MV, Wallace K, et al. Global DNA hypomethylation (LINE-1) in the normal colon and lifestyle characteristics and dietary and genetic factors. Cancer Epidemiol Biomark Prev. 2009;18:1041–1049.

    CAS  Google Scholar 

  118. Wallace K, Grau MV, Levine AJ, et al. Association between folate levels and CpG Island hypermethylation in normal colorectal mucosa. Cancer Prev Res (Phila). 2010;3:1552–1564.

    CAS  Google Scholar 

  119. Siena S, Sartore-Bianchi A, Di Nicolantonio F, et al. Biomarkers predicting clinical outcome of epidermal growth factor receptor-targeted therapy in metastatic colorectal cancer. J Natl Cancer Inst. 2009;101(19):1308–1324.

  120. Conesa-Zamora P, Garcia-Solano J, Garcia-Garcia F, et al. Expression profiling shows differential molecular pathways and provides potential new diagnostic biomarkers for colorectal serrated adenocarcinoma. Int J Cancer. 2013;132:297–307.

    CAS  PubMed  Google Scholar 

  121. Albuquerque C, Baltazar C, Filipe B, et al. Colorectal cancers show distinct mutation spectra in members of the canonical WNT signaling pathway according to their anatomical location and type of genetic instability. Genes Chromosom Cancer. 2010;49:746–759.

    CAS  PubMed  Google Scholar 

  122. Alhopuro P, Sammalkorpi H, Niittymaki I, et al. Candidate driver genes in microsatellite-unstable colorectal cancer. Int J Cancer. 2012;130:1558–1566.

    CAS  PubMed  Google Scholar 

  123. Delker DA, McGettigan BM, Kanth P, et al. RNA sequencing of sessile serrated colon polyps identifies differentially expressed genes and immunohistochemical markers. PLoS One. 2014;9:e88367.

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work on this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Numbers P30CA15704, UO1CA152756, 5U01HG006507, U54CA143862, and P01CA077852 (W.M.G.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Support for this work was also provided by a Burroughs Wellcome Fund Translational Research Award for Clinician Scientist (W.M.G.). We wish to thank Michael Luo for helpful suggestions.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William M. Grady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grady, W.M., Markowitz, S.D. The Molecular Pathogenesis of Colorectal Cancer and Its Potential Application to Colorectal Cancer Screening. Dig Dis Sci 60, 762–772 (2015). https://doi.org/10.1007/s10620-014-3444-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-014-3444-4

Keywords

Navigation