Skip to main content

Advertisement

Log in

Neuroprotective effect of Picholine virgin olive oil and its hydroxycinnamic acids component against β-amyloid-induced toxicity in SH-SY5Y neurotypic cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The health benefits of Mediterranean diet has long been reported and attributed to the consumption of virgin olive oil (VOO). Here, we evaluated the neuroprotective effect of VOO against Alzheimer’s disease by determining its effect on β-amyloid (Aβ)-induced cytotoxicity and oxidative stress, and explored the possibility that its hydroxycinnamic acids (Hc acids) content contribute significantly to this effect. SH-SY5Y cells treated with or without Aβ and with VOO or Hc acids (mixture of p-coumaric acid, ferulic acid, vanillic acid, and caffeic acid) were subjected to MTT assay and the results showed that both samples alleviated Aβ-induced cytotoxicity. Furthermore, both VOO and Hc acids decreased the reactive oxygen species level. Using western blot to determine the effect of these samples on Aβ-induced activation of pERK1/2, p38, and JNK MAPKs, results revealed that both VOO and Hc acids inhibited the activation of pERK1/2 and p-p38 MAPK, but not JNK. Moreover, VOO upregulated the glycolytic enzymes genes hexokinase (HK1), and phosphofructokinase (PFKM) expression which means that VOO enhanced the energy metabolism of the neurotypic cells, and therefore suggests another mechanism by which VOO could provide protection against Aβ-induced cytotoxicity. The findings in this study suggest that VOO has a neuroprotective effect, attributable to its hydroxycinnamic acids component, against Aβ-induced cytotoxicity and oxidative stress through the inhibition of the activation of MAPKs ERK and p38 and by enhancing the energy metabolism of the neurotypic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aparicio R, Luna G (2002) Characterisation of monovarietal virgin olive oils. Eur J Lipid Sci Technol 104:614–627

    Article  CAS  Google Scholar 

  • Bartzoki G (2011) Alzheimer’s disease as homeostatic response to age-related myelin breakdown. Neurobiol Aging 32:1341–1372. doi:10.1016/j.neurobiolaging.2009.08.007

    Article  Google Scholar 

  • Betteridge JD (2000) What is oxidative stress? Metabolism 49:3–8. doi:10.1016/S0026-0495(00)80077-3

    Article  CAS  Google Scholar 

  • Birben E, Sahiner U, Sackesen C, Erzurum S, Kalayci D (2012) Oxidative stress and antioxidant defense. WAO J 5:9–19

    CAS  Google Scholar 

  • Bourne LC, Rice-Evans CA (1998) Urinary detection of hydroxycinnamates and flavonoids in humans after high dietary intake of fruit. Free Radic Res 28:429–438

    Article  CAS  Google Scholar 

  • Bragado P, Armesilla A, Silva A, Porras A (2007) Apoptosis by cisplatin requires p53-mediated p38α activation through ROS generation. Apoptosis 12:1733–1742. doi:10.1007/s10495-007-0082-8

    Article  CAS  Google Scholar 

  • Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimer’s Dement 3:186–191. doi:10.1016/j.jalz.2007.04.381

    Article  Google Scholar 

  • Butterfield DA (2002) Amyloid β-peptide (1-42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. Free Radic Res 36:1307–1313. doi:10.1080/1071576021000049890

    Article  CAS  Google Scholar 

  • Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 7:548–554. doi:10.1016/S1471-4914(01)02173-6

    Article  CAS  Google Scholar 

  • Butterfield DA, Swomley AM, Sultana R (2013) Amyloid β-peptide (1–42)-induced oxidative stress in Alzheimer disease: importance in disease pathogenesis and progression. Antiox Redox Sign 19:823–835. doi:10.1089/ars.2012.5027

    Article  CAS  Google Scholar 

  • Chen J, Ho C (1997) Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. J Agric Food Chem 45:2374–2378. doi:10.1021/jf970055t

    Article  CAS  Google Scholar 

  • Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43. doi:10.1016/j.pneurobio.2013.06.004

    Article  CAS  Google Scholar 

  • Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30:271–281. doi:10.1007/s12264-013-1423-y

    Article  CAS  Google Scholar 

  • Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621s–629s

    CAS  Google Scholar 

  • Cicerale S, Lucas L, Keast R (2010) Biological activities of phenolic compounds present in virgin olive oil. Int J Mol Sci 11:458–479. doi:10.3390/ijms11020458

    Article  CAS  Google Scholar 

  • Craft S, Newcomer J, Kanne S, Dagogo-Jack S, Cryer P, Sheline Y, Luby J, dagogo-Jack A, Anderson A (1996) Memory improvement following induced hyperinsulinemia in Alzheimer’s disease. Aging 17:123–130. doi:10.1016/0197-4580(95)02002-0

    CAS  Google Scholar 

  • Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A et al (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27:3–20. doi:10.1016/j.pneurobio.2013.06.004

    Article  CAS  Google Scholar 

  • Daniels WM, Hendricks J, Salie R, Taljaard JJ (2001) The role of MAP-kinase superfamily in beta-amyloid toxicity. Metab Brain Dis 16:175–185. doi:10.1023/A:1012541011123

    Article  CAS  Google Scholar 

  • D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Annali dell’Istituto Superiori Sanita 43:348–361

    Google Scholar 

  • Dimitrios B (2006) Sources of natural phenolic antioxidants. Trends Food Sci Technol 2006:505–512. doi:10.1016/j.tifs.2006.04.004

    Article  Google Scholar 

  • Finkel T, Holbrook N (2000) Oxidants, oxidative stress and the biology of ageing. Nature (London) 408:239–247. doi:10.1038/35041687

    Article  CAS  Google Scholar 

  • Florent-Bechard S, Malaplate-Armand C, Koziel V, Kriem B, Olivier JL, Pillot T, Oster T (2007) Towards a nutritional approach for prevention of Alzheimer’s disease: biochemical and cellular aspects. J Neurol Sci 262:27–36. doi:10.1016/j.jns.2007.06.046

    Article  CAS  Google Scholar 

  • Giovannini MG, Scali C, Prosperi C, Bellucci A, Vannucchi MG, Rosi S, Pepeu G, Casamenti F (2002) β-amyloid-induced inflammation and cholinergic hypofunction in the rat brain in vivo: involvement of the p38MAPK pathway. Neurobiol Dis 11:257–274. doi:10.1006/nbdi.2002.0538

    Article  CAS  Google Scholar 

  • Isoda H, Motojima H, Margout D, Neves M, Han J, Nakajima M, Larroque M (2012) Antiallergic effect of Picholine olive oil-in-water emulsion through β-hexosaminidase release inhibition and characterization of their physicochemical properties. J Agric Food Chem 60:7851–7858. doi:10.1021/jf3016078

    Article  CAS  Google Scholar 

  • Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10:187–198. doi:10.1016/S1474-4422(10)70277-5

    Article  CAS  Google Scholar 

  • Lardeau A, Poquet L (2013) Phenolic metabolites derived from coffee consumption are unlikely to cross the blood–brain barrier. J Pharma Biomed Anal 766:134–138. doi:10.1016/j.jpba.2012.12.016

    Article  Google Scholar 

  • Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature (London) 443:787–795. doi:10.1038/nature05292

    Article  CAS  Google Scholar 

  • Manach C, Williamson G, Morand C, Scalbert A, Remesy C (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81:230S–242S

    CAS  Google Scholar 

  • Miyamae Y, Han J, Sasaki K, Terakawa M, Isoda H (2011) 3,4,5-tri-Ο-caffeoylquinic acid inhibits amyloid β-mediated cellular toxicity on SH-SY5Y cells through the upregulation of PGAM1 and G3PDH. Cytotechnology 63:191–200. doi:10.1007/s10616-011-9341-1

    Article  CAS  Google Scholar 

  • Nciri R, Desmoulin F, Saleh Allagui M, El Feki A, Vincent C, Croute F (2013) Neuroprotective effect of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress. Int J Neuropsychopharmacol 16:365–376. doi:10.1017/S1461145712000132

    Article  CAS  Google Scholar 

  • Nieves Franco M, Galeano-Diaz T, Lopez O, Fernandez-Bolanos JG, Sanchez J, De Miguel C, Victoria Gil M, Martin-Vertedor D (2014) Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem 163:289–298. doi:10.1016/j.foodchem.2014.04.091

    Article  Google Scholar 

  • Nizzari M, Venezia V, Repetto E, Caorsi V, Magrassi R, Gagliani MC, Carlo P, Florio T, Schettini G, Tacchetti C, Russo T, Diaspro A, Russo C (2007) Amyloid precursor protein and presenilin1 interact with the adaptor GRB2 and modulate ERK1,2 signaling. J Biol Chem 282:13833–13844. doi:10.1074/jbc.M610146200

    Article  CAS  Google Scholar 

  • Norton S, Matthews FE, Barnes DE, Yaffe K, Brayne C (2014) Potential for primary prevention of Alzheimer’s disease: an analysis of population-based data. Lancet Neurol 13:788–794. doi:10.1016/S1474-4422(14)70136-X

    Article  Google Scholar 

  • Ollivier D, Artaud J, Pinatel C, Durbec JP, Guerere M (2003) Triacylglycerol and fatty acid compositions of French virgin olive oils. Characterization by chemometrics. J Agric Food Chem 51:5723–5731. doi:10.1021/jf034365p

    Article  CAS  Google Scholar 

  • Owen RW, Giacosa A, Hull WE, Haubner R, Spiegelhalder B, Bartsch H (2000) The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur J Cancer 36:1235–1247. doi:10.1016/S0959-8049(00)00103-9

    Article  CAS  Google Scholar 

  • Perez-Lopez FR, Chedraui P, Haya J, Cuadros JL (2009) Effects of the Mediterranean diet on longevity and age-related morbid conditions. Maturitas 64:67–79. doi:10.1016/j.maturitas.2009.07.013

    Article  Google Scholar 

  • Sasaki K, Han J, Shimozono H, Villareal MO, Isoda H (2013) Caffeoylquinic acid-rich purple sweet potato extract, with or without anthocyanin, imparts neuroprotection and contributes to the improvement of spatial learning and memory of SAMP8 Mouse. J Agric Food Chem 61:5037–5045. doi:10.1021/jf3041484

    Article  CAS  Google Scholar 

  • Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59:912–921. doi:10.1002/ana.20854

    Article  Google Scholar 

  • Schroeter H, Spencer JPE, Rice-Evans C, Williams RJ (2001) Flavonoids protect neurons from oxidized low-density lipoprotein-induced apoptosis involving JNK, c-jun and caspase-3. Biochem J 358:547–557. doi:10.1042/bj3580547

    Article  CAS  Google Scholar 

  • Stadtman ER (2001) Protein oxidation in aging and age-related diseases. Ann N Y Acad Sci 928:22–38. doi:10.1111/j.1749-6632.2001.tb05632.x

    Article  CAS  Google Scholar 

  • Tamagno E, Robino G, Obbili A, Bardini P, Aragno M, Parola M, Danni O (2003) H2O2 and 4-hydroxynonenal mediate amyloid β-induced neuronal apoptosis by activating jnks and p38mapk. Exp Neurol 180:144–155. doi:10.1016/S0014-4886(02)00059-6

    Article  CAS  Google Scholar 

  • Van Merloo J, Kaspers GJL, Cloos J (2011) Cell sensitivity assays: the MTT assay. Methods Mol Biol 731:237–245. doi:10.1007/978-1-61779-080-5_20

    Article  Google Scholar 

  • Vlassenko AG, Raichle ME (2014) Brain aerobic glycolysis functions and Alzheimer’s disease. Clin Transl Imaging 3:27–37. doi:10.1007/s40336-014-0094-7

    Article  Google Scholar 

  • Wang X, Wang W, Li L, Perry G, Lee H, Zhu X (2014) Oxidative stress and mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta 1842:1240–1247. doi:10.1016/j.bbadis.2013.10.015

    Article  CAS  Google Scholar 

  • Zhang J, Melton LD (2008) Cytoprotective effects of polyphenolics on H2O2-induced cell death in SH-SY5Y cells in relation to their antioxidant activities. Eur Food Res Technol 228:123–131. doi:10.1007/s00217-008-0915-x

    Article  CAS  Google Scholar 

  • Zhang L, Hongsheng W, Wang T, Jiang N, Yu P, Chong Y, Fu F (2014) Ferulic acid ameliorates nerve injury induced by cerebral ischemia in rats. Exp Ther Med 9:972–976. doi:10.3892/etm.2014.2157

    Google Scholar 

  • Zhou F, Xu Y, Hou XY (2014) MLK3-MKK3/6-P38MAPK cascades following N-methyl-d-aspartate receptor activation contributes to amyloid-β peptide-induced apoptosis in SH-SY5Y cells. J Neurosci Res 92:808–817. doi:10.1002/jnr.23354

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroko Isoda.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villareal, M.O., Sasaki, K., Margout, D. et al. Neuroprotective effect of Picholine virgin olive oil and its hydroxycinnamic acids component against β-amyloid-induced toxicity in SH-SY5Y neurotypic cells. Cytotechnology 68, 2567–2578 (2016). https://doi.org/10.1007/s10616-016-9980-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9980-3

Keywords

Navigation