Skip to main content

Advertisement

Log in

A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

In vitro studies about biomaterials biological properties are essential screening tests. Yet cell cultures encounter difficulties related to cell retention on material surface or to the observation of both faces of permeable materials. The objective of the present study was to develop a reliable in vitro method to study cell behavior on rigid and flexible/permeable biomaterials elaborating two specific insert-based systems (IBS-R and IBS-F respectively). IBS-R was designed as a specific cylindrical polytetrafluoroethylene (PTFE) system to evaluate attachment, proliferation and morphology of human gingival fibroblasts (HGFs) on grade V titanium and lithium disilicate glass-ceramic discs characteristics of dental prostheses. The number of cells, their covering on discs and their morphology were determined from MTS assays and microscopic fluorescent images after 24, 48 and 72 h. IBS-F was developed as a two components system to study HGFs behavior on guided bone regeneration polyester membranes. The viability and the membrane barrier effect were evaluated by metabolic MTS assays and by scanning electron microscopy. IBS-R and IBS-F were shown to promote (1) easy and rapid handling; (2) cell retention on biomaterial surface; (3) accurate evaluation of the cellular proliferation, spreading and viability; (4) use of non-toxic material. Moreover IBS-F allowed the study of the cell migration through degradable membranes, with an access to both faces of the biomaterial and to the bottom of culture wells for medium changing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abrahamsson I, Berglundh T, Lindhe J (1997) The mucosal barrier following abutment dis/reconnection. An Exp Study Dogs J Clin Periodontol 24:568–572

    Article  CAS  Google Scholar 

  • Abrahamsson I, Berglundh T, Glantz PO, Lindhe J (1998) The mucosal attachment at different abutments. An Exp Study Dogs J Clin Periodontol 25:721–727

    Article  CAS  Google Scholar 

  • Behring J, Junker R, Walboomers XF, Chessnut B, Jansen JA (2008) Toward guided tissue and bone regeneration: morphology, attachment, proliferation, and migration of cells cultured on collagen barrier membranes. Syst Rev Odontol 96:1–11. doi:10.1007/s10266-008-0087-y

    Article  CAS  Google Scholar 

  • Bertrand V, Bozukova D, Svaldo Lanero T, Huang YS, Schol D, Rosière N, Grauwels M, Duwez AS, Jérôme C, Pagnoulle C, De Pauw E, De Pauw-Gillet MC (2014) Biointerface multiparametric study of intraocular lens acrylic materials. J Cataract Refract Surg 40:1536–1544. doi:10.1016/j.jcrs.2014.01.035

    Article  Google Scholar 

  • Brackett MG, Lockwood PE, Messer RL, Lewis JB, Bouillaguet S, Wataha JC (2008) In vitro cytotoxic response to lithium disilicate dental ceramics. Dent Mater 24:450–456. doi:10.1016/j.dental.2007.06.013

    Article  CAS  Google Scholar 

  • Cochran D, Simpson J, Weber H, Buser D (1994) Attachment and growth of periodontal cells on smooth and rough titanium. Int J Oral Maxillofac Implants 9:289–297

    Google Scholar 

  • Eisenbarth E, Meyle J, Nachtigall W, Breme J (1996) Influence of the surface structure of titanium materials on the adhesion of fibroblasts. Biomaterials 17:1399–1403

    Article  CAS  Google Scholar 

  • Fukuda T, Ezawa T, Tanaka K, Ito K (2000) Peripheral occluding effects of non-absorbable membranes on ingrowth of cultured gingival connective tissue cells. J Periodontol 71:1680–1686

    Article  CAS  Google Scholar 

  • Gabriel B, Rivera-Hidalgo F, Stanford T (1996) Attachment of fibroblasts to membranes used for guided tissue regeneration in vitro. J Dent Res 75:(Abstract no. 2472)

  • Gomez-Florit M, Ramis JM, Xing R, Taxt-Lamolle S, Haugen HJ, Lyngstadaas SP, Monjo M (2013) Differential response of human gingival fibroblasts to titanium- and titanium-zirconium-modified surfaces. J Periodontal Res 49:425–436. doi:10.1111/jre.12121

    Article  Google Scholar 

  • Grossner-Schreiber B, Herzog M, Hedderich J, Duck A, Hannig M, Griepentrog M (2006) Focal adhesion contact formation by fibroblasts cultured on surface-modified dental implants: an in vitro study. Clin Oral Implants Res 17:736–745. doi:10.1111/j.1600-0501.2006.01277.x

    Article  Google Scholar 

  • Hillmann G, Steinkamp-Zucht A, Geurtsen W, Gross G, Hoffmann A (2002) Culture of primary human gingival fibroblasts on biodegradable membranes. Biomaterials 23:1461–1469

    Article  CAS  Google Scholar 

  • Hormia M, Kononen M (1994) Immunolocalization of fibronectin and vitronectin receptors in human gingival fibroblasts spreading on titanium surfaces. J Periodontal Res 29:146–152

    Article  CAS  Google Scholar 

  • Huang YS, Bertrand V, Bozukova D, Pagnoulle C, Labrugère C, De Pauw E, De Pauw-Gillet MC, Durrieu MC (2014) RGD surface functionalization of the hydrophilic acrylic intraocular lens material to control posterior capsular opacification. PLoS One 9:e114973. doi:10.1371/journal.pone.0114973

    Article  Google Scholar 

  • Jorge JR, Barao VA, Delben JA, Faverani LP, Queiroz TP, Assuncao WG (2013) Titanium in dentistry: historical development state of the art and future perspectives. J Indian Prosthodont Soc 13:71–77. doi:10.1007/s13191-012-0190-1

    Article  Google Scholar 

  • Kamoi K, Iino M, Ishiguro H (2006) Regeneration therapy for oral disease. Hum Cell 19:76–82. doi:10.1111/j.1749-0774.2006.00012.x

    Article  Google Scholar 

  • Karring T, Isidor F, Nyman S, Lindhe J (1985) New attachment formation on teeth with a reduced but healthy periodontal ligament. J Clin Periodontol 12:51–60

    Article  CAS  Google Scholar 

  • Kasaj A, Reichert C, Gotz H, Rohrig B, Smeets R, Willershausen B (2008) In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration. Head Face medicine 4:22. doi:10.1186/1746-160X-4-22

    Article  Google Scholar 

  • Kokoti M, Sivropoulou A, Koidis P, Garefis P (2001) Comparison of cell proliferation on modified dental ceramics. J Oral Rehabil 28:880–887

    Article  CAS  Google Scholar 

  • Kononen M, Hormia M, Kivilahti J, Hautaniemi J, Thesleff I (1992) Effect of surface processing on the attachment, orientation, and proliferation of human gingival fibroblasts on titanium. J Biomed Mater Res 26:1325–1341. doi:10.1002/jbm.820261006

    Article  CAS  Google Scholar 

  • Lauer G, Wiedmann-Al-Ahmad M, Otten JE, Hubner U, Schmelzeisen R, Schilli W (2001) The titanium surface texture effects adherence and growth of human gingival keratinocytes and human maxillar osteoblast-like cells in vitro. Biomaterials 22:2799–2809

    Article  CAS  Google Scholar 

  • Lin WS, Harris BT, Zandinejad A, Martin WC, Morton D (2014) Use of prefabricated titanium abutments and customized anatomic lithium disilicate structures for cement-retained implant restorations in the esthetic zone. J Prosthet Dent 111:181–185. doi:10.1016/j.prosdent.2013.07.013

    Article  Google Scholar 

  • Locci P, Becchetti E, Pugliese M, Rossi L, Belcastro S, Calvitti M, Pietrarelli G, Staffolani N (1997) Phenotype expression of gingival fibroblasts cultured on membranes used in guided tissue regeneration. J Periodontol 68:857–863

    Article  CAS  Google Scholar 

  • Milella E, Ramires PA, Brescia E, La Sala G, Di Paola L, Bruno V (2001) Physicochemical, mechanical, and biological properties of commercial membranes for GTR. J Biomed Mater Res 58:427–435

    Article  CAS  Google Scholar 

  • Moon YH, Yoon MK, Moon JS, Kang JH, Kim SH, Yang HS, Kim MS (2013) Focal adhesion linker proteins expression of fibroblast related to adhesion in response to different transmucosal abutment surfaces. J Adv Prosthodont 5:341–350. doi:10.4047/jap.2013.5.3.341

    Article  Google Scholar 

  • Nothdurft FP, Fontana D, Ruppenthal S, May A, Aktas C, Mehraein Y, Lipp P, Kaestner L (2014) Differential behavior of fibroblasts and epithelial cells on structured implant abutment materials: a comparison of materials and surface topographies. Clin Implant Dent Relat Res 17:1237–1249. doi:10.1111/cid.12253

    Article  Google Scholar 

  • Nyman S, Lindhe J, Karring T, Rylander H (1982) New attachment following surgical treatment of human periodontal disease. J Clin Periodontol 9:290–296

    Article  CAS  Google Scholar 

  • Pabst AM, Walter C, Grassmann L, Weyhrauch M, Brüllmann DD, Ziebart T, Scheller H, Lehmann KM (2014) Influence of CAD/CAM all-ceramic materials on cell viability, migration ability and adenylate kinase release of human gingival fibroblasts and oral keratinocytes. Clin Oral Investig 18:1111–1118. doi:10.1007/s00784-013-1098-9

    Article  CAS  Google Scholar 

  • Pae A, Lee H, Kim HS, Kwon YD, Woo YH (2009) Attachment and growth behaviour of human gingival fibroblasts on titanium and zirconia ceramic surfaces. Biomed Mater 4:025005. doi:10.1088/1748-6041/4/2/025005

    Article  Google Scholar 

  • Payne JM, Cobb CM, Rapley JW, Killoy WJ, Spencer P (1996) Migration of human gingival fibroblasts over guided tissue regeneration barrier materials. J Periodontol 67:236–244

    Article  CAS  Google Scholar 

  • Pirhonen EM, Pohjonen TH, Weber FE (2006) Novel membrane for guided bone regeneration. Int J Artif Organs 29:834–840

    CAS  Google Scholar 

  • Rompen E (2012) The impact of the type and configuration of abutments and their (repeated) removal on the attachment level and marginal bone Eur. J Oral Implantol 5:S83–S90

    Google Scholar 

  • Rothamel D, Schwarz F, Sculean A, Herten M, Scherbaum W, Becker J (2004) Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Clin Oral Implants Res 15:443–449. doi:10.1111/j.1600-0501.2004.01039.x

    Article  Google Scholar 

  • Scantlebury TV (1993) 1982-1992: a decade of technology development for guided tissue regeneration. J Periodontol 64:1129–1137

    Article  CAS  Google Scholar 

  • Simain-Sato F, Lahmouzi J, Kalykakis GK, Heinen E, Defresne MP, De Pauw MC, Grisar T, Legros JJ, Legrand R (1999) Culture of gingival fibroblasts on bioabsorbable regenerative materials in vitro. J Periodontol 70:1234–1239

    Article  CAS  Google Scholar 

  • Takata T, Wang HL, Miyauchi M (2001a) Attachment, proliferation and differentiation of periodontal ligament cells on various guided tissue regeneration membranes. J Periodontal Res 36:322–327

    Article  CAS  Google Scholar 

  • Takata T, Wang HL, Miyauchi M (2001b) Migration of osteoblastic cells on various guided bone regeneration membranes. Clin Oral Implants Res 12:332–338

    Article  CAS  Google Scholar 

  • Tetè S, Zizzari VL, Borelli B, De Colli M, Zara S, Sorrentino R, Scarano A, Gherlone E, Cataldi A, Zarone F (2014) Proliferation and adhesion capability of human gingival fibroblasts onto zirconia, lithium disilicate and feldspathic veneering ceramic in vitro. Dent Mater J 33:7–15

    Article  Google Scholar 

  • Vernino AR, Jones FL, Holt RA, Nordquist RE, Brand JW (1995) Evaluation of the potential of a polylactic acid barrier for correction of periodontal defects in baboons: a clinical and histologic study. Int J Periodont Restor Dent 15:84–101

    CAS  Google Scholar 

  • Wang HL, Miyauchi M, Takata T (2002) Initial attachment of osteoblasts to various guided bone regeneration membranes: an in vitro study. J Periodontal Res 37:340–344

    Article  Google Scholar 

  • Wataha JC (2012) Predicting clinical biological responses to dental materials. Dent Mater 28:23–40. doi:10.1016/j.dental.2011.08.595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to express our thanks to Inion Ltd (Tampere, Finland), Kensey Nash (Eschborn, Germany), Nobel Biocare (Göteborg, Sweden), and Ivoclar Vivadent (Schaan, Liechtenstein) for sample supply. We would also like to thank Sirris (Liège, Belgium) for their assistance in the development of PTFE inserts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charlotte Grenade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grenade, C., Moniotte, N., Rompen, E. et al. A new method using insert-based systems (IBS) to improve cell behavior study on flexible and rigid biomaterials. Cytotechnology 68, 2437–2448 (2016). https://doi.org/10.1007/s10616-016-9964-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-9964-3

Keywords

Navigation