Skip to main content
Log in

Green tea catechin induced phagocytosis can be blocked by catalase and an inhibitor of transient receptor potential melastatin 2 (TRPM2)

  • Brief Report
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The major polyphenols in green tea, (−)-epigallocatechin and (−)-epigallocatechin gallate, have been shown to enhance the phagocytic activity of macrophage-like cells; however, the mechanism involved was not clarified. In this study, we have identified that the catechins induced phagocytosis can be blocked by catalase and an inhibitor of transient receptor potential melastatin 2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Arakawa H, Maeda M, Okubo S, Shimamura T (2004) Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull 27:277–281

    Article  CAS  Google Scholar 

  • Azam S, Hadi N, Khan NU, Hadi SM (2004) Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol In Vitro 18:555–561

    Article  CAS  Google Scholar 

  • Di A, Gao XP, Qian F, Kawamura T, Han J, Hecquet C, Ye RD, Vogel SM, Malik AB (2011) The redox-sensitive cation channel TRPM2 modulates phagocyte ROS production and inflammation. Nat Immunol 13:29–34

    Article  Google Scholar 

  • Fujimura Y, Umeda D, Yano S, Maeda-Yamamoto M, Yamada K, Tachibana H (2007) The 67 kDa laminin receptor as a primary determinant of anti-allergic effects of O-methylated EGCG. Biochem Biophys Res Commun 364:79–85

    Article  CAS  Google Scholar 

  • Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S (2003) (−)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochem Pharmacol 66:1769–1778

    Article  CAS  Google Scholar 

  • Gardella S, Andrei C, Poggi A, Zocchi MR, Rubartelli A (2000) Control of interleukin-18 secretion by dendritic cells: role of calcium influxes. FEBS Lett 481:245–248

    Article  CAS  Google Scholar 

  • Gardella S, Andrei C, Lotti LV, Poggi A, Torrisi MR, Zocchi MR, Rubartelli A (2001) CD8(+) T lymphocytes induce polarized exocytosis of secretory lysosomes by dendritic cells with release of interleukin-1beta and cathepsin D. Blood 98:2152–2159

    Article  CAS  Google Scholar 

  • Kashio M, Sokabe T, Shintaku K, Uematsu T, Fukuta N, Kobayashi N, Mori Y, Tominaga M (2012) Redox signal-mediated sensitization of transient receptor potential melastatin 2 (TRPM2) to temperature affects macrophage functions. Proc Natl Acad Sci U S A 109:6745–6750

    Article  CAS  Google Scholar 

  • Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A (2000) Hydrogen peroxide is an endothelium-derived hyperpolarizing factor in mice. J Clin Invest 106:1521–1530

    Article  CAS  Google Scholar 

  • Monobe M, Ema K, Kato F, Hirokane H, Maeda-Yamamoto M (2007) Technique for screening immune-enhancing polysaccharides in food using 1,25-dihydroxyvitamin D3-differentiated HL60 cells. J Agric Food Chem 55:2543–2547

    Article  CAS  Google Scholar 

  • Monobe M, Ema K, Tokuda Y, Maeda-Yamamoto M (2010) Enhancement of phagocytic activity of macrophage-like cells by pyrogallol-type green tea polyphenols through caspase signaling pathways. Cytotechnology 62:201–203

    Article  CAS  Google Scholar 

  • Oikawa S, Furukawaa A, Asada H, Hirakawa K, Kawanishi S (2003) Catechins induce oxidative damage to cellular and isolated DNA through the generation of reactive oxygen species. Free Radic Res 37:881–890

    Article  CAS  Google Scholar 

  • Sugisawa A, Umegaki K (2002) Physiological concentrations of (−)-epigallocatechin-3-O-gallate (EGCg) prevent chromosomal damage induced by reactive oxygen species in WIL2-NS cells. J Nutr 132:1836–1839

    CAS  Google Scholar 

  • Tachibana H, Koga K, Fujimura Y, Yamada K (2004) A receptor for green tea polyphenol EGCG. Nat Struct Mol Biol 11:380–381

    Article  CAS  Google Scholar 

  • Vanhoutte PM (2001) Endothelium-derived free radicals: for worse and for better. J Clin Invest 107:23–25

    Article  CAS  Google Scholar 

  • Wehrhahn J, Kraft R, Harteneck C, Hauschildt S (2010) Transient receptor potential melastatin 2 is required for lipopolysaccharide-induced cytokine production in human monocytes. J Immunol 184:2386–2393

    Article  CAS  Google Scholar 

  • Yamamoto S, Shimizu S, Kiyonaka S, Takahashi N, Wajima T, Hara Y, Negoro T, Hiroi T, Kiuchi Y, Okada T, Kaneko S, Lange I, Fleig A, Penner R, Nishi M, Takeshima H, Mori Y (2008) TRPM2-mediated Ca2 + influx induces chemokine production in monocytes that aggravates inflammatory neutrophil infiltration. Nat Med 14:738–747

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant for project research (Development of fundamental technology for analysis and evaluation of functional agricultural products and functional foods), Ministry of Agriculture, Fishery and Forestry, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manami Monobe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monobe, M., Ema, K., Tokuda, Y. et al. Green tea catechin induced phagocytosis can be blocked by catalase and an inhibitor of transient receptor potential melastatin 2 (TRPM2). Cytotechnology 66, 561–566 (2014). https://doi.org/10.1007/s10616-013-9618-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9618-7

Keywords

Navigation