Skip to main content
Log in

Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Vorinostat is a member of histone deacetylase inhibitors, which represents a new class of anticancer agents for the treatment of solid and hematological malignancies. Studies have shown that these drugs induce DNA damage in blood lymphocytes, which is proposed to be due to the generation of oxidative lesions. The increase in DNA damage is sometimes associated with risk of developing secondary cancer. Thus, finding a treatment that limits DNA damage caused by anticancer drugs would be beneficial. Tempol is a potent antioxidant that was shown to prevent DNA damage induced by radiation. In this study, we aimed to investigate the harmful effects of vorinostat on DNA damage, and the possible protective effects of tempol against this damage. For that, the spontaneous frequency of sister chromatid exchanges (SCEs), chromosomal aberrations (CAs), and 8-hydroxy-2-deoxy guanosine (8-OHdG) levels were measured in cultured human lymphocytes treated with vorinostat and/or tempol. The results showed that vorinostat significantly increases the frequency of SCEs, CAs and 8-OHdG levels in human lymphocytes as compared to control. These increases were normalized by the treatment of cells with tempol. In conclusion, vorinostat is genotoxic to lymphocytes, and this toxicity is reduced by tempol. Such results could set the stage for future studies investigating the possible usefulness of antioxidants co-treatment in preventing the genotoxicity of vorinostat when used as anticancer in human.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alsatari ES, Azab M, Khabour OF, Alzoubi KH, Sadiq MF (2012) Assessment of DNA damage using chromosomal aberrations assay in lymphocytes of waterpipe smokers. Int J Occup Med Environ Health 25:218–224. doi:10.2478/S13382-012-0027-5

    Article  Google Scholar 

  • Al-Sweedan SA, Khabour O, Isam R (2012) Genotoxicity assessment in patients with thalassemia minor. Mutat Res 744:167–171. doi:10.1016/j.mrgentox.2012.02.010

    Article  CAS  Google Scholar 

  • Alzoubi K, Khabour O, Hussain N, Al-azzam S, Mhaidat N (2012) Evaluation of vitamin B12 effects on DNA damage induced by pioglitazone. Mutat Res 748:48–51. doi:10.1016/j.mrgentox.2012.06.009

    Article  CAS  Google Scholar 

  • Azab M, Khabour OF, Al-Omari L, Alzubi MA, Alzoubi K (2009) Effect of every-other-day fasting on spontaneous chromosomal damage in rat’s bone-marrow cells. J Toxicol Environ Health A 72:295–300. doi:10.1080/15287390802526357

    Article  CAS  Google Scholar 

  • Basu HS, Mahlum A, Mehraein-Ghomi F, Kegel SJ, Guo S, Peters NR, Wilding G (2011) Pretreatment with anti-oxidants sensitizes oxidatively stressed human cancer cells to growth inhibitory effect of suberoylanilide hydroxamic acid (SAHA). Cancer Chemother Pharmacol 67:705–715. doi:10.1007/s00280-010-1364-3

    Article  CAS  Google Scholar 

  • Carroll RT, Galatsis P, Borosky S, Kopec KK, Kumar V, Althaus JS, Hall ED (2000) 4-Hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (Tempol) inhibits peroxynitrite-mediated phenol nitration. Chem Res Toxicol 13:294–300

    Article  CAS  Google Scholar 

  • Ezoe S (2012) Secondary leukemia associated with the anti-cancer agent, etoposide, a topoisomerase II inhibitor. Int J Environ Res Public Health 9:2444–2453. doi:10.3390/ijerph9072444

    Article  CAS  Google Scholar 

  • Fleenor BS, Seals DR, Zigler ML, Sindler AL (2012) Superoxide-lowering therapy with TEMPOL reverses arterial dysfunction with aging in mice. Aging Cell 11:269–276. doi:10.1111/j.1474-9726.2011.00783.x

    Article  CAS  Google Scholar 

  • Ivett JL, Tice RR (1982) Average generation time: a new method of analysis and quantitation of cellular proliferation kinetics. Environ Mutagen 4:358

    Google Scholar 

  • Kao-Shan CS, Fine RL, Whang-Peng J, Lee EC, Chabner BA (1987) Increased fragile sites and sister chromatid exchanges in bone marrow and peripheral blood of young cigaratte smokers. Cancer Res 47:6278–6282

    CAS  Google Scholar 

  • Kaya FF, Topaktas M (2007) Genotoxic effects of potassium bromate on human peripheral lymphocytes in vitro. Mutat Res 626:48–52. doi:10.1016/j.mrgentox.2006.08.006

    Article  CAS  Google Scholar 

  • Khabour OF, Alsatari ES, Azab M, Alzoubi KH, Sadiq MF (2011) Assessment of genotoxicity of waterpipe and cigarette smoking in lymphocytes using the sister-chromatid exchange assay: a comparative study. Environ Mol Mutagen 52:224–228. doi:10.1002/em.20601

    Article  CAS  Google Scholar 

  • Khabour OF, Soudah OA, Aaysh MH (2013) Genotoxicity assessment in iron deficiency anemia patients using sister chromatid exchanges and chromosomal aberrations assays. Mutat Res 750:72–76. doi:10.1016/j.mrgentox.2012.09.006

    Article  CAS  Google Scholar 

  • Lee JH, Choy ML, Ngo L, Foster SS, Marks PA (2010) Histone deacetylase inhibitor induces DNA damage, which normal but not transformed cells can repair. Proc Natl Acad Sci U S A 107:14639–14644. doi:10.1073/pnas.1008522107

    Article  CAS  Google Scholar 

  • Lewinska A, Wnuk M, Slota E, Bartosz G (2008) The nitroxide antioxidant Tempol affects metal-induced cyto- and genotoxicity in human lymphocytes in vitro. Mutat Res 649:7–14. doi:10.1016/j.mrgentox.2007.07.014

    Article  CAS  Google Scholar 

  • Madeya ML (1996) Oral complications from cancer therapy: part 1—pathophysiology and secondary complications. Oncol Nurs Forum 23:801–807

    CAS  Google Scholar 

  • Mann BS, Johnson JR, He K, Sridhara R, Abraham S, Booth BP, Verbois L, Morse DE, Jee JM, Pope S, Harapanhalli RS, Dagher R, Farrell A, Justice R, Pazdur R (2007) Vorinostat for treatment of cutaneous manifestations of advanced primary cutaneous T-cell lymphoma. Clin Cancer Res 13:2318–2322. doi:10.1158/1078-0432.CCR-06-2672

    Article  CAS  Google Scholar 

  • Marks PA, Richon VM, Miller T, Kelly WK (2004) Histone deacetylase inhibitors. Adv Cancer Res 91:137–168. doi:10.1016/S0065-230X(04)91004-4

    Article  CAS  Google Scholar 

  • M’Bemba-Meka P, Lemieux N, Chakrabarti SK (2007) Role of oxidative stress and intracellular calcium in nickel carbonate hydroxide-induced sister-chromatid exchange, and alterations in replication index and mitotic index in cultured human peripheral blood lymphocytes. Arch Toxicol 81:89–99. doi:10.1007/s00204-006-0128-7

    Article  Google Scholar 

  • Mitchell JB, Anver MR, Sowers AL, Rosenberg PS, Figueroa M, Thetford A, Krishna MC, Albert PS, Cook JA (2012) The antioxidant tempol reduces carcinogenesis and enhances survival in mice when administered after nonlethal total body radiation. Cancer Res 72:4846–4855. doi:10.1158/0008-5472.CAN-12-1879

    Article  CAS  Google Scholar 

  • Murata M, Thanan R, Ma N, Kawanishi S (2012) Role of nitrative and oxidative DNA damage in inflammation-related carcinogenesis. J Biomed Biotechnol 2012:623019. doi:10.1155/2012/623019

    Article  Google Scholar 

  • Namdar M, Perez G, Ngo L, Marks PA (2010) Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc Natl Acad Sci U S A 107:20003–20008. doi:10.1073/pnas.1013754107

    Article  CAS  Google Scholar 

  • Oh SD, Lao JP, Hwang PY, Taylor AF, Smith GR, Hunter N (2007) BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130:259–272. doi:10.1016/j.cell.2007.05.035

    Article  CAS  Google Scholar 

  • Petruccelli LA, Dupere-Richer D, Pettersson F, Retrouvey H, Skoulikas S, Miller WH Jr (2011) Vorinostat induces reactive oxygen species and DNA damage in acute myeloid leukemia cells. PLoS ONE 6:e20987. doi:10.1371/journal.pone.0020987

    Article  CAS  Google Scholar 

  • Prebet T, Vey N (2011) Vorinostat in acute myeloid leukemia and myelodysplastic syndromes. Expert Opin Investig Drugs 20:287–295. doi:10.1517/13543784.2011.542750

    Article  CAS  Google Scholar 

  • Ramachandran L, Nair CK (2012) Prevention of gamma-radiation induced cellular genotoxicity by tempol: protection of hematopoietic system. Environ Toxicol Pharmacol 34:253–262. doi:10.1016/j.etap.2012.04.008

    Article  CAS  Google Scholar 

  • Richon VM (2010) Targeting histone deacetylases: development of vorinostat for the treatment of cancer. Epigenomics 2:457–465. doi:10.2217/epi.10.20

    Article  CAS  Google Scholar 

  • Siegel D, Hussein M, Belani C, Robert F, Galanis E, Richon VM, Garcia-Vargas J, Sanz-Rodriguez C, Rizvi S (2009) Vorinostat in solid and hematologic malignancies. J Hematol Oncol 2:31. doi:10.1186/1756-8722-2-31

    Article  Google Scholar 

  • Vera-Ramirez L, Ramirez-Tortosa M, Perez-Lopez P, Granados-Principal S, Battino M, Quiles JL (2012) Long-term effects of systemic cancer treatment on DNA oxidative damage: the potential for targeted therapies. Cancer Lett 327:134–141. doi:10.1016/j.canlet.2011.12.029

    Article  CAS  Google Scholar 

  • Wilcox CS (2010) Effects of tempol and redox-cycling nitroxides in models of oxidative stress. Pharmacol Ther 126:119–145. doi:10.1016/j.pharmthera.2010.01.003

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant (No 12/2012) from the Deanship of Research at the Jordan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karem H. Alzoubi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alzoubi, K.H., Khabour, O.F., Jaber, A.G. et al. Tempol prevents genotoxicity induced by vorinostat: role of oxidative DNA damage. Cytotechnology 66, 449–455 (2014). https://doi.org/10.1007/s10616-013-9597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-013-9597-8

Keywords

Navigation