Skip to main content
Log in

Reaction of several resveratrol glycoside derivatives with hypochlorites in various media

  • Published:
Chemistry of Natural Compounds Aims and scope

The reactions of pterostilbenoside (trans-3,5-dimethoxystilben-4′-O-β-D-glucoside) and Ar–O–Tr derivatives of resveratroloside (3,5-dihydroxystilben-4′-O-β-D-glucoside) and pinostilbenoside (3-methoxy-5-hydroxystilben-4′-O-β-D-glucoside) with NaOCl and t-BuOCl in the presence of the stable nitroxyl radical TEMPO were studied in various media. It was found that the principal product of pterostilbenoside transformation was its 2,6-dichloroderivative, a part of which was oxidized to form 2,6-dichloropterostilbene glucuronide. Trityl ethers of resveratroloside and pinostilbenoside reacted with the hypochlorites to form mixtures of products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Mannila, A. Talvitie, and E. Kolehmainen, Photochemistry, 33, 813 (1993).

    Article  CAS  Google Scholar 

  2. V. S. Sobolev, R. J. Cole, J. W. Dorner, and B. Yagen, J. Assoc. Off. Anal. Chem. Int., 78(5), 1117 (1995); Chem. Abstr., 123, 337690 (1995).

    Google Scholar 

  3. E. Celott, R. Ferrarini, R. Zironi, and L. S. Conte, J. Chromatogr. A, 730, 47 (1996).

    Article  Google Scholar 

  4. B. B. Aggarwal and S. Shishodia (eds.), Resveratrol in Health and Disease, CRC Press, Taylor & Francis Group, Boca Raton, London, New York (2006).

    Google Scholar 

  5. G. Kuhnle, J. P. Spencer, G. Chowrimootoo, H. Schroeter, E. Debnam, S. K. S. Srai, C. Rice-Evans, and U. Hahn, Biochem. Biophys. Res. Commun., 272(1), 212 (2000).

    Article  PubMed  CAS  Google Scholar 

  6. C. Yu. Y. G. Shin, A. Chow, Y. Li, J. W. Kosmeder, Y. S. Lee, W. H. Hirschelman, J. M. Pezzuto, R. G. Mehta, and R. B. van Breeman, Pharm. Res., 19, 12, 1907 (2002).

    Article  PubMed  Google Scholar 

  7. V. Aumont, S. Krisa, E. Battaglia, P. Netter, T. Richard, J.-M. Merillon, J. Magdalou, and N. Sabolovic, Arch. Biochem. Biophys., 393(2), 281 (2001).

    Article  PubMed  CAS  Google Scholar 

  8. N. Sabolovic, A.-C. Humbert, A. Radominska-Pandya, and J. Magdalou, Biopharm. Drug Dispos., 27, 181 (2006).

    Article  PubMed  CAS  Google Scholar 

  9. A. S. Gromova, V. A. Lutskii, and N. A. Tyukavkina, Khim. Drev., (3), 103 (1979).

  10. N. A. Tyukavkina, A. S. Gromova, V. I. Lutskii, and V. K. Voronov, Khim. Prir. Soedin., 600 (1972).

  11. A. S. Gromova, N. A. Tyukavkina, V. I. Lutskii, G. A. Kalabin, and D. F. Kushnarev, Khim. Prir. Soedin., 677 (1975).

  12. E. E. Shul’ts, T. N. Petrova, N. N. Komarova, N. F. Salakhutdinov, and G. A. Tolstikov, RF Pat. RU No. 2,294,919 (2005); Chem. Abstr., 146, 316687 (2007).

    Google Scholar 

  13. D. A. Learmonth, Bioconjugate Chem., 14, 262 (2003).

    Article  CAS  Google Scholar 

  14. L.-X. Wang, A. Heredia, H. Song, Z. Zhang, B. Yu, C. Davis, and R. Redfield, J. Pharm. Sci., 93, 10, 2448 (2004).

    Article  PubMed  CAS  Google Scholar 

  15. Z. Zhang, B. Yu, and R. R. Schmidt, Synthesis, 8, 1301 (2006).

    Article  Google Scholar 

  16. M. A. Lopez-Lopez, A. Balbuzano-Deus, J. C. Rodriguez-Dominiguez, M. M. Hernandez, A. F. Villalobo, Y. I. Reyes, and G. Kirsch, Synlett, 649 (2007).

  17. R. N. Desai and L. F. Blackwell, Synlett, 1981 (2003).

  18. M. Bouktaib, A. Atmani, and C. Rolando, Tetrahedron Lett., 43, 6263 (2002).

    Article  CAS  Google Scholar 

  19. I. G. Shenderovich, Z. Kecki, I. Wawer, and G. S. Denisov, Spectrosc. Lett., 30(8), 1515 (1997).

    Article  CAS  Google Scholar 

  20. C. Aliaga, J. M. Juarez-Ruiz, J. C. Scaiano, and A. Aspee, Org. Lett., 10(11), 2147 (2008).

    Article  PubMed  CAS  Google Scholar 

  21. A. E. J. de Nooy, A. C. Besemer, and H. van Bekkum, Carbohydr. Res., 269, 89 (1995).

    Article  Google Scholar 

  22. M. E. Jung and Y. Xu, Heterocycles, 47, 349 (1998).

    Article  CAS  Google Scholar 

  23. A. Yu. Sokolov, A. N. Semenyuk, A. M. Murabdulaev, V. V. Sosunov, L. S. Viktorova, and Yu. S. Skoblov, Bioorg. Khim., 33, 527 (2007).

    Google Scholar 

  24. R. L. Mackman, C. G. Boojamra, V. Prasad, L. Zhang, K.-Y. Lin, O. Petrakovsky, D. Babusis, J. Chen, J. Douglas, D. Grant, H. C. Hui, C. U. Kim, D. Y. Markevitch, J. Vela, A. Ray, and T. Cihlar, Bioorg. Med. Chem. Lett., 17, 6785 (2007).

    Article  PubMed  CAS  Google Scholar 

  25. C. S. Rye and S. G. Withers, J. Am. Chem. Soc., 124, 9756 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. R. A. Miller and R. S. Hoerrner, Org. Lett., 5, 285 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. C. Walling and J. A. McGuinness, J. Am. Chem. Soc., 91, 2053 (1969).

    Article  CAS  Google Scholar 

  28. B. C. Vastano, Y. Chen, N. Zhu, C.-T. Ho, Z. Zhou, and R. T. Rosen, J. Agric. Food Chem., 48, 253 (2000).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Rogachev.

Additional information

Translated from Khimiya Prirodnykh Soedinenii, No. 1, January–February, 2012, pp. 5–11.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rogachev, A.D., Komarova, N.I., Pozdeeva, A.V. et al. Reaction of several resveratrol glycoside derivatives with hypochlorites in various media. Chem Nat Compd 48, 1–7 (2012). https://doi.org/10.1007/s10600-012-0146-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-012-0146-z

Keywords

Navigation