Skip to main content
Log in

Uncertainty quantification of two-phase flow problems via measure theory and the generalized multiscale finite element method

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The problem of multiphase phase flow in heterogeneous subsurface porous media is one involving many uncertainties. In particular, the permeability of the medium is an important aspect of the model that is inherently uncertain. Properly quantifying these uncertainties is essential in order to make reliable probabilistic-based predictions and future decisions. In this work, a measure-theoretic framework is employed to quantify uncertainties in a two-phase subsurface flow model in high-contrast media. Given uncertain saturation data from observation wells, the stochastic inverse problem is solved numerically in order to obtain a probability measure on the space of unknown permeability parameters characterizing the two-phase flow. As solving the stochastic inverse problem requires a number of forward model solves, we also incorporate the use of a conservative version of the generalized multiscale finite element method for added efficiency. The parameter-space probability measure is used in order to make predictions of saturation values where measurements are not available, and to validate the effectiveness of the proposed approach in the context of fine and coarse model solves. A number of numerical examples are offered to illustrate the measure-theoretic methodology for solving the stochastic inverse problem using both fine and coarse solution schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aziz, K., Settari, A.: Petroleum Reservoir Simulation. Applied Science Publishers (1979)

  2. Benzi, M., Golub, G.H., Liesen, J.: Numerical solution of saddle point problems. Acta Numer. 14, 1–137 (2005). doi:10.1017/S0962492904000212

    Article  Google Scholar 

  3. Beven, K., Freer, J.: Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the glue methodology. J. Hydrol. 249(1–4), 11–29 (2001). doi:10.1016/S0022-1694(01)00421-8. http://www.sciencedirect.com/science/article/pii/S0022169401004218

    Article  Google Scholar 

  4. Breidt, J., Butler, T., Estep, D.: A measure-theoretic computational method for inverse sensitivity problems I: Method and analysis. SIAM J. Numer. Anal. 49(5), 1836–1859 (2011)

    Article  Google Scholar 

  5. Bush, L., Ginting, V., Presho, M.: Application of a conservative, generalized multiscale finite element method to flow models. J. Comput. Appl. Math. 260, 395–409 (2014). doi:10.1016/j.cam.2013.10.006

    Article  Google Scholar 

  6. Butler, T., Estep, D.: A numerical method for solving a stochastic inverse problem for parameters. Ann. Nucl. Energy 52, 86–94 (2013)

    Article  Google Scholar 

  7. Butler, T., Estep, D., Sandelin, J.: A computational measure-theoretic approach to inverse sensitivity problems II: A posterior error analysis. SIAM J. Numer. Anal. 50(1), 22–45 (2012)

    Article  Google Scholar 

  8. Butler, T., Estep, D., Tavener, S., Dawson, C., Westerink, J.: A measure-theoretic computational method for inverse sensitivity problems III: Multiple quantities of interest. SIAM J. Uncertain. Quantif. 2(1), 174–202 (2014)

    Article  Google Scholar 

  9. Butler, T., Estep, D., Tavener, S., Wildey, T., Dawson, C., Graham, L. (2014)

  10. Butler, T., Graham, L., Estep, D., Dawson, C., Westerink, J.: Definition and solution of a stochastic inverse problem for the manning’s n parameter field in hydrodynamic models. Adv. Water Resour. 78, 60–79 (2015)

    Article  Google Scholar 

  11. Butler, T., Huhtala, A., Juntunen, M.: Quantifying uncertainty in material damage from vibrational data. J. Comput. Phys. 283, 414–435 (2015)

    Article  Google Scholar 

  12. Carrera, J., Neuman, S.: Estimation of aquifer parameters under transient and steady state conditions: 1. maximum likelihood method incorporating prior information. Water Resour. Res. 22(2), 199–210 (1986)

    Article  Google Scholar 

  13. Carrera, J., Neuman, S.: Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms. Water Resour. Res. 22(2), 211–227 (1986)

    Article  Google Scholar 

  14. Carrera, J., Neuman, S.: Estimation of aquifer parameters under transient and steady state conditions: 3. application to synthetic field data. Water Resour. Res. 22(2), 228–242 (1986)

    Article  Google Scholar 

  15. Chatzipantelidis, P.: Finite volume methods for elliptic PDE’s: a new approach. M2AN. Math. Model. Numer. Anal. 36(2), 307–324 (2002). doi:10.1051/m2an:2002014

    Article  Google Scholar 

  16. Chen, L.: A new class of high order finite volume methods for second order elliptic equations. SIAM J. Numer. Anal. 47(6), 4021–4043 (2010). doi:10.1137/080720164

    Article  Google Scholar 

  17. Chen, Z., Wu, J., Xu, Y.: Higher-order finite volume methods for elliptic boundary value problems. Adv. Comput. Math. 37(2), 191–253 (2012). doi:10.1007/s10444-011-9201-8

    Article  Google Scholar 

  18. Efendiev, Y., Galvis, J.: Coarse-grid multiscale model reduction techniques for flows in heterogeneous media and applications. Chapter of Numerical Analysis of Multiscale Problems, Lecture Notes in Computational Science and Engineering, vol. 83, pp 97–125

  19. Efendiev, Y., Galvis, J., Gildin, E.: Local-global multiscale model reduction for flows in highly heterogeneous media. Submitted

  20. Efendiev, Y., Galvis, J., Hou, T.: Generalized multiscale finite element methods. J. Comput. Phys. 251, 116–135 (2013)

    Article  Google Scholar 

  21. Efendiev, Y., Galvis, J., Lazarov, R., Willems, J.: Robust domain decomposition preconditioners for abstract symmetric positive definite bilinear forms. ESIAM : M2AN 46, 1175–1199 (2012)

    Article  Google Scholar 

  22. Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods. nonlinear elliptic equations. Commun. Comput. Phys. 15, 733–755 (2014)

    Article  Google Scholar 

  23. Efendiev, Y., Galvis, J., Li, G., Presho, M.: Generalized multiscale finite element methods. Oversampling strategies. Int. J. Multiscale Comput. Eng. 12(6), 465–485 (2014)

    Article  Google Scholar 

  24. Efendiev, Y., Galvis, J., Thomines, F.: A systematic coarse-scale model reduction technique for parameter-dependent flows in highly heterogeneous media and its applications. Multiscale Model. Simul. 10, 1317–1343 (2012)

    Article  Google Scholar 

  25. Efendiev, Y., Galvis, J., Wu, X.H.: Multiscale finite element methods for high-contrast problems using local spectral basis functions. J. Comput. Phys. 230(4), 937–955 (2011)

    Article  Google Scholar 

  26. Efendiev, Y., Hou, T.: Multiscale finite element methods: Theory and applications. In: Surveys and Tutorials in the Applied Mathematical Sciences, vol. 4. Springer, New York (2009)

  27. Efendiev, Y., Jin, B., Presho, M., Tan, X.: Multilevel markov chain monte carlo method for high-contrast single-phase flow problems. Commun. Comput. Phys. 17, 259–286 (2015)

    Article  Google Scholar 

  28. Freer, J., Beven, K.: Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the GLUE approach. Water Resour. Res. 32(7), 2161–2173 (1996)

    Article  Google Scholar 

  29. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high contrast media. SIAM J. Multiscale Model. Simul. 8, 1461–1483 (2010)

    Article  Google Scholar 

  30. Galvis, J., Efendiev, Y.: Domain decomposition preconditioners for multiscale flows in high contrast media. Reduced dimension coarse spaces. SIAM J. Multiscale Model. Simul. 8, 1621–1644 (2010)

    Article  Google Scholar 

  31. Galvis, J., Presho, M.: A mass conservative generalized multiscale finite element method applied to two-phase flow in heterogeneous porous media. in press J. Computat. Appl. Math. (2015). arXiv:1504.02033

  32. Ginting, V., Pereira, F., Presho, M., Wo, S.: Application of the two-stage Markov chain Monte Carlo method for characterization of fractured reservoirs using a surrogate flow model. Comput. Geosci. 15, 691–707 (2011). doi:10.1007/s10596-011-9236-4

    Article  Google Scholar 

  33. Graham, L., Mattis, S., Walsh, S., Butler, T., McDougall, D.: BET: Butler, Estep, Tavener method v1.0.2. doi:10.5281/zenodo.33858 (2015)

  34. Hou, T., Wu, X.: A multiscale finite element method for elliptic problems in composite materials and porous media. J. Comput. Phys. 134, 169–189 (1997)

    Article  Google Scholar 

  35. Jenny, P., Lee, S.H., Tchelep, H.A.: Adaptive multiscale finite-volume method for multiphase flow and transport in porous media. Multiscale Model. Simul. 3(1), 50–64 (electronic) (2004/05). doi:10.1137/030600795

  36. Künze, R., Lunati, I., Lee, S.H.: A multilevel multiscale finite-volume method. J. Comput. Phys. 255, 502–520 (2013). doi:10.1016/j.jcp.2013.08.042

    Article  Google Scholar 

  37. Leube, P.C., Geiges, A., Nowak, W.: Bayesian assessment of the expected data impact on prediction confidence in optimal sampling design. Water Resour. Res. 48(2), n/a–n/a (2012). doi:10.1029/2010WR010137

    Article  Google Scholar 

  38. Lunati, I., Lee, S.H.: An operator formulation of the multiscale finite-volume method with correction function. Multiscale Model. Simul. 8(1), 96–109 (2009). doi:10.1137/080742117

    Article  Google Scholar 

  39. Mattis, S., Butler, T., Dawson, C., Estep, D., Vesselinov, V.: Parameter estimation and prediction for groundwater contamination based on measure theory. Water Resour. Res. 51(9), 7608–7629 (2015)

    Article  Google Scholar 

  40. Nowak, W, de Barros, F.P.J., Rubin, Y.: Bayesian geostatistical design: Task-driven optimal site investigation when the geostatistical model is uncertain. Water Resour. Res. 46(3), n/a–n/a (2010). doi:10.1029/2009WR008312

    Article  Google Scholar 

  41. Owhadi, H., Zhang, L.: Localized bases for finite-dimensional homogenization approximations with nonseparated scales and high contrast. Multiscale Model. Simul. 9(4), 1373–1398 (2011). doi:10.1137/100813968

    Article  Google Scholar 

  42. Plexousakis, M., Zouraris, G.E.: On the construction and analysis of high order locally conservative finite volume-type methods for one-dimensional elliptic problems. SIAM J. Numer. Anal. 42(3), 1226–1260 (electronic) (2004). doi:10.1137/S0036142902406302

    Article  Google Scholar 

  43. Presho, M., Protasov, A., Gildin, E.: Local-global model reduction of parameter-dependent, single-phase flow models via balanced truncation. J. Comput. Appl. Math. 271, 163–179 (2014)

    Article  Google Scholar 

  44. Thomas, J.: Numerical Partial Differential Equations; Conservation Laws and Elliptic Equations. Springer-Verlag, New York (1999)

    Book  Google Scholar 

  45. Troldborg, M., Nowak, W., Tuxen, N., Bjerg, P.L., Helmig, R., Binning, P.J.: Uncertainty evaluation of mass discharge estimates from a contaminated site using a fully bayesian framework. Water Resour. Res. 46(12), n/a–n/a (2010). doi:10.1029/2010WR009227

    Article  Google Scholar 

  46. Vrugt, J., ter Braak, C., Gupta, H., Robinson, B.: Equifinality of formal (dream) and informal (glue) Bayesian approaches in hydrologic modeling? Stochastic Environ. Res. Risk Assess. 23(7), 1011–1026 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Presho.

Additional information

This material is based upon work supported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under Award Number DE-SC0009286 as part of the DiaMonD Multifaceted Mathematics Integrated Capability Center.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Presho, M., Mattis, S. & Dawson, C. Uncertainty quantification of two-phase flow problems via measure theory and the generalized multiscale finite element method. Comput Geosci 21, 187–204 (2017). https://doi.org/10.1007/s10596-016-9603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-016-9603-2

Keywords

Navigation