Skip to main content
Log in

Multiphase flow modeling with density functional method

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

This paper is a review of applications of density functional theory (DFT) in compositional hydrodynamics. The basic idea is representation of the entropy or the Helmholtz energy of the mixture as the functional depending on the molar densities of chemical components (density functional). The hydrodynamics is governed by local conservation laws of chemical components, momentum, and energy, while constitutive relations and boundary conditions are introduced in accordance with the explicit form of the density functional. The general ideas and the history of the DFT in compositional hydrodynamics are discussed. Then the DFT for multiphase multicomponent mixtures is presented including the exposition of the first principles, governing equations and constitutive relations, and explicit expressions of density functional depending on physical situation. The DFT-based numerical simulator is described, and several multiphase simulation results are presented to illustrate the scope and effectiveness of DFT: sessile drop with and without surfactant, droplet breakup in shear flow, and three-phase hydrodynamics with mobile solid phase. Also, two practical scenarios with multiphase simulations in micro-CT porous rock models are presented: two-phase immiscible water-oil flow and three-phase water-gas-condensate flow with phase transitions. All numerical results are obtained by essentially the same code; both the number of chemical components and the Helmholtz energy have been set up in accordance with physical situation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, D.M., McFadden, G.B., Wheeler, A.A.: Diffuse-interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30, 139–165 (1998)

    Article  Google Scholar 

  2. Bazarov, I.: Thermodynamics. Pergamon Press, Oxford (1964)

    Google Scholar 

  3. Berg, S., Armstrong, R., Ott, H., Georgiadis, A., Klapp, S.A., Schwing, A., Neiteler, R., Brussee, N., Makurat, A., Leu, L., Enzmann, F., Schwarz, J.-O., Wolf, M., Khan, F., Kersten, M., Irvine, S., Stampanoni, M.: Multiphase flow in porous rock imaged under dynamic flow conditions with fast x-ray computed microtomography SCA2013-011, Napa Valley, California, USA

  4. Davydov, Yu.M.: Calculation by the coarse particle method of the flow past a body of arbitrary shape. USSR Comp. Math. Math. Phys 11(4), 304–312 (1972)

    Article  Google Scholar 

  5. de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (2011)

    Google Scholar 

  6. de Wit, R.: Theory of disclinations: III. Continuous and discrete disclinations in isotropic elasticity. J. Res. Natl. Bur. Stand. 77A(3), 359–368 (1973)

    Article  Google Scholar 

  7. Demyanov, A.Yu., Dinariev, O.Yu: Modeling of multicomponent multiphase mixture flows on the basis of the density functional method. Fluid Dyn. 39(6), 933–944 (2004)

    Article  Google Scholar 

  8. Dem’yanov, A.Yu., Dinariev, O.Yu: Application of the density-functional method for numerical simulation of flows of multispecies multiphase mixtures. J. Appl. Mech. Tech. Phys 45(5), 670–678 (2004)

    Article  Google Scholar 

  9. Demianov, A.Yu., Dinariev, O.Yu., Evseev, N.V.: Introduction to the density functional theory in hydrodynamics. Fizmatlit, Moscow (2014)

    Google Scholar 

  10. Demianov, A., Dinariev, O., Evseev, N.: Density functional modeling in multiphase compositional hydrodynamics. Can. J. Chem. Eng. 89, 206–226 (2011)

    Article  Google Scholar 

  11. Dinariev, O.Y.: A hydrodynamic description of a multicomponent multiphase mixture in narrow pores and thin layers. J. Appl. Math. Mech 59(5), 745–752 (1995)

    Article  Google Scholar 

  12. Dinariev, O.Y.: Thermal effects in the description of a multicomponent mixture using the density functional method. J. Appl. Math. Mech 62(3), 397–405 (1998)

    Article  Google Scholar 

  13. Dinariev, O.Yu: Nonnegative entropy production in the hydrodynamics of multiparticle quantum system. Russ. Phys. J. 41(5), 60–66 (1998)

    Article  Google Scholar 

  14. Dinariev, O.Yu: Nonnegative hydrodynamic entropy production in classical statistical mechanics. Russ. Phys. J. 43(12), 1044–1048 (2000)

    Article  Google Scholar 

  15. Dinariev, O.Yu: Substantiation of the method of density functional in classical and quantum statistical mechanics. Russ. Phys. J. 43(9), 713–717 (2000)

    Article  Google Scholar 

  16. Dinariev, O.Yu., Evseev, N.V.: Description of the flows of two-phase mixtures with phase transitions in capillaries by the density-functional method. J. Engineer. Phys. Thermophys. 78(3), 474–481 (2005)

    Article  Google Scholar 

  17. Dinariev, O.Yu, Evseev, N.V.: Description of viscous-fluid flows with a moving solid phase in the density-functional theory. J. Engineer. Phys. Thermophys. 80(5), 70–77 (2007)

    Google Scholar 

  18. Dinariev, O.Yu., Evseev, N.V.: Application of density-functional theory to calculation of flows of three-phase mixtures with phase transitions. J. Engineer. Phys. Thermophys. 80(6), 1247–1255 (2007)

    Article  Google Scholar 

  19. Dinariev, O.Yu., Evseev, N.V.: Modeling of surface phenomena in the presence of surface-active agents on the basis of the density-functional theory. Fluid Dyn. 45(1), 85–95 (2010)

    Article  Google Scholar 

  20. Dreizler, R.M., Gross, E.K.U.: Density Functional Theory: An Approach to Quantum Many-Body Problem. Springer, Berlin (1990)

    Book  Google Scholar 

  21. Eringen, A.C., Suhubi, E.S.: Elastodynamics, vol. 1. Finite Motions. Academic Press, New York (1974)

    Google Scholar 

  22. Eschrig, H.: The fundamentals of density functional theory. Teubner, Stuttgart (1996)

    Book  Google Scholar 

  23. Fermi, E.: Un Metodo Statistice per la Determinazionedi Alcune Proprieta dell’Atomo. Rend. Accad. Lincei 6, 602–607 (1927). (in Italian)

    Google Scholar 

  24. Gelfand, I.M., Fomin, S.V.: Calculus of Variations. Dover, New York (2003)

    Google Scholar 

  25. Gray, R.M.: Entropy and Information Theory. Springer, New York (1990)

    Book  Google Scholar 

  26. Guido, S., Greco, F.: Dynamics of a liquid drop in a flowing immiscible liquid. In: Rheology Reviews, pp 99–142 (2004)

  27. Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 3B(136), 864–871 (1964)

    Article  Google Scholar 

  28. Kadić, A., Edelen, D.G.B.: A Gauge Theory of Dislocations and Disclinations. Springer, Berlin (1983)

    Book  Google Scholar 

  29. Kleinert, H.: Gauge Fields in Condensed Matter, vol. 2. Stresses and Defects. World Scientific, Singapore (1989)

    Book  Google Scholar 

  30. Knackstedt, M., Senden, T., Carnerup, A., Fogden, A.: Improved characterization of EOR processes in 3D. Characterizing mineralogy, wettability and residual fluid phases at the pore scale. In: Proceedings of the SPE Enhanced Oil Recovery Conference. 19-21 July, Kuala Lumpur, Malaysia, SPE 145093 (2011)

  31. Koch, W., Holthausen, M.C.: A Chemist’s Guide to Density Functional Theory. Wiley, Weinheim (2001)

    Book  Google Scholar 

  32. Kohn, W., Sham, L.J.: Self consistent equations including exchange and correlation effects. Phys. Rev 140, A1133—A1138 (1965)

    Article  Google Scholar 

  33. Konopleva, N.P., Popov, V.N.: Gauge Fields. Harwood Academic Publ., New York (1981)

    Google Scholar 

  34. Korobeinikov, S.N.: Nonlinear deformation of solids. Siberian Division of RAS, Novosibirsk (2000). (in Russian)

    Google Scholar 

  35. Koroteev, D., Dinariev, O., Evseev, N., Klemin, D., Nadeev, A., Safonov, S., Gurpinar, O., Berg, S., van Kruijsdijk, C., Armstrong, R.T., Myers, M.T., Hathon, L, de Jong, H.: Direct hydrodynamic simulation of multiphase flow in porous rock. In: Proceedings of the International Symposium of the Society of Core Analysts, SCA2013-014, Napa Valley, California, USA (2013)

  36. Koroteev, D., Dinariev, O., Evseev, N., Klemin, D., Safonov, S., Gurpinar, O., Berg, S., van Kruijsdijk, C., Myers, M., Hathon, L, de Jong, H.: Application of digital rock technology for chemical EOR screening. In: Proceedings of the SPE Enhanced Oil Recovery Conference. 2-4 July, Kuala Lumpur, Malaysia, SPE-165258 (2013)

  37. Kossevich, A.M.: The Crystal Lattice. Wiley, Berlin (1999)

    Book  Google Scholar 

  38. Kröner, E.: Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Ration. Mech. Anal. 4(4), 18–334 (1960). (in German)

    Google Scholar 

  39. Kunin, I.A.: Theory of dislocations. In: Schouten, J.A. (ed.) Tensor Analysis for Physicists. (in Russian), pp 373–443. Moscow, Nauka (1965)

    Google Scholar 

  40. Lamb, H.: Statics, Including Hydrostatics and the Elements of the Theory of Elasticity, 3rd ed. Cambridge University Press, Cambridge (1928)

    Google Scholar 

  41. Lurie, A.I.: Nonlinear Theory of Elasticity. North-Holland, Cambridge, England (1990)

  42. Martin, N.F.G., England, J.W: Mathematical Theory of Entropy. Cambridge University Press, Cambridge (2010)

    Google Scholar 

  43. Mura, T.: Micromechanics of Defects in Solids. Martinus Nijhoff Publ., Dordrecht (1987)

    Book  Google Scholar 

  44. Murnagan, F.D.: Finite Deformations of Elastic Solid. Wiley, New York (1951)

    Google Scholar 

  45. Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules. Oxford University Press, Oxford (1989)

    Google Scholar 

  46. Patankar, S.: Numerical Heat Transfer and Fluid Flow. Hemisphere Publishing Corporation, New York (1980)

    Google Scholar 

  47. Prigogine, I., Defay, R.: Chemical Thermodynamics. Longman, New York (1954)

    Google Scholar 

  48. Rallison, J.M.: The deformation of small viscous drops and bubbles in shear flows. Ann. Rev. Fluid Mech 16, 45–66 (1984)

    Article  Google Scholar 

  49. Rassenfoss, S.: Digital rocks out to become a core technology. J. Pet. Technol., 36–41 (2011)

  50. Rosen, M.I.: Surfactants and Interfacial Phenomena. Wiley, Hoboken (2004)

    Book  Google Scholar 

  51. Saenger, E.H., Madonna, C.: Digital rock physics: numerical vs. laboratory measurements. In: Proceedings of the SEG Annual Meeting, San Antonio TX, USA, 18-23 September (2011)

  52. Sedov, L.I.: Mechanics of continuous media, vol. 1. World Scientific, New York (1996)

    Google Scholar 

  53. Steinbach, I.: Phase-field model for microstructure evolution at the mesoscopic scale. Annu. Re. Mater. Res 43(1), 89–107 (2013)

    Article  Google Scholar 

  54. Sternberg, S.: Lectures on Differential Geometry. Chelsea Pub Co., London (1982)

    Google Scholar 

  55. Stone, H.A.: Dynamics of drop deformation and breakup in viscous fluids. Annu. Rev. Fluid Mech 26, 65–102 (1994)

    Article  Google Scholar 

  56. Taylor, G.I.: The viscosity of a fluid containing small drops of another fluid. Proc. R. Soc. London Ser. A 38, 41–48 (1932)

    Article  Google Scholar 

  57. Thomas, L.H.: The calculation of atomic fields. Proc. Camb. Philos. Soc. V. 23, 542–548 (1927)

    Article  Google Scholar 

  58. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Springer, Berlin (2004)

    Book  Google Scholar 

  59. Zubarev, D.: Nonequilibrium Statistical Thermodynamics. Springer, New York (1974)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay Evseev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinariev, O., Evseev, N. Multiphase flow modeling with density functional method. Comput Geosci 20, 835–856 (2016). https://doi.org/10.1007/s10596-015-9527-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9527-2

Keywords

Navigation