Skip to main content

Basic Theory and Conceptual Framework of Multiphase Flows

  • Living reference work entry
  • First Online:
Handbook of Multiphase Flow Science and Technology

Abstract

The fundamentals of computational multiphase fluid dynamics are presented using discrete and continuum frameworks. Depending on the number, type, and size of phases and their interaction between phases within the flow system, a multiscale consideration of the multiphase flow physics allows the adoption of a number of possible approaches. The Lagrangian formulation can be utilized to track the motion of discrete constituents of identifiable portion of particular phases occupying the flow system. This represents the most comprehensive investigation that can be performed to analyze the multiphase flow physics. Because of the complexity of the microscopic motions and thermal characteristics of each discrete constituent which can be prohibitive at the (macro) device scale, the Eulerian formulation which characterizes the flow of discrete constituents as a fluid can be adopted for practical analysis of the flow system. This results in the development of a multifluid approach which solves for the conservation equations of continuous and dispersed phases. In order to better resolve the microphysics of the discrete constituents at the mesoscale, population balance allows the synthesization of the behavior and dynamic evolution of the population of the discrete constituents occupying the flow system. Such an approach allows the consideration of the spatial and temporal evolution of the geometrical structures as a result of formation and destruction of agglomerates or clusters through interactions between the discrete constituents and, more importantly, the collisions with turbulent eddies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • L.J. Agee, S. Banerjee, R.B. Duffey, E.D. Hughes, Some aspects of two-fluid models and their numerical solutions, Second OECD/NEA Specialists Meeting on Transient Two-Phase Flow, CEA, France, 1978

    Google Scholar 

  • P. Bagchi, S. Balachandar, Effect on free rotation on the motion of a solid sphere in linear shear flow at moderate Re. J. Fluid Mech. 473, 379–388 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • S. Banerjee, A.M.C. Chan, Separated flow model I. Analysis of the averaged and local instantaneous formulations. Int. J. Multiphase Flow 6, 1–24 (1980)

    Article  MATH  Google Scholar 

  • D.C. Besnard, F.H. Harlow, Turbulence in multiphase flow. Int. J. Multiphase Flow 14, 679–699 (1988)

    Article  MATH  Google Scholar 

  • D. Bouvard, R.M. McMeeking, Deformation of interparticle necks by diffusion-controlled creep. J. Am. Ceram. Soc. 79, 666–672 (1996)

    Article  Google Scholar 

  • R.S. Bradley, The cohesion between smoke particle. Trans. Faraday Soc. 32, 1080–1090 (1936)

    Article  Google Scholar 

  • N. V. Brilliantov, T. Pöschel, Adhesive interactions of viscoelastic spheres, Powder and Grains 2005, Ed. by R. Garcia-Rojo, H. J. Herrmann, S. McNamara, vols. 1 & 2 (Balkema Publisher, Leiden, 2005), pp. 505–508

    Google Scholar 

  • C. Catttaneo (1938). Sul Contatto di due Corpi Elastici: Distribuzione Locale Degli Sforzi, Academia Nationale Lincei Rendiconti, Ser. 6, Vol. 27, pp. 342–348, 434–436, 474–478

    Google Scholar 

  • S.C.P. Cheung, G.H. Yeoh, J.Y. Tu, On the modeling of population balance in isothermal vertical bubbly flows – average bubble number density approach. Chem. Eng. Process. 46, 742–756 (2007a)

    Article  Google Scholar 

  • S.C.P. Cheung, G.H. Yeoh, J.Y. Tu, On the numerical study of isothermal bubbly flow using two population balance approaches. Chem. Eng. Sci. 62, 4659–4674 (2007b)

    Article  Google Scholar 

  • R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops and Particles (Dover Publications, New York, 1978)

    Google Scholar 

  • C.T. Crowe, M.P. Sharma, D.E. Stock, Particle-source-in cell (PSI-cell) model for gas-droplet flows. J. Fluids Eng. 99, 325–332 (1998)

    Article  Google Scholar 

  • P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  • B. Dahneke, The influence of flattening on the adhesion of particles. J. Colloid Interface Sci. 40, 1–13 (1972)

    Article  Google Scholar 

  • J.Y. Delenne, M.S. Youssoufi, F. Cherblanc, J.C. Benet, Mechanical behaviour and failure of cohesive granular materials. Int. J. Numer. Anal. Methods Geomech. 28, 1577–1594 (2004)

    Article  MATH  Google Scholar 

  • J.M. Delhaye, J.L. Achard, On the averaging operators introduced in two-phase flow modeling, Proceedings of CSNI Specialists Meeting on Transient Two-Phase Flow, Toronto, Canada, 1976

    Google Scholar 

  • H. Deresiewicz, Contact of elastic spheres under an oscillating torsional couple. Trans. ASME J. Appl. Mech. 21, 52–56 (1954)

    MATH  Google Scholar 

  • B.V. Derjaguin, Untersuchungen über die Reibung und Adhäsion, IV. Kolloid Zeitschr. 69, 155–164 (1934)

    Article  Google Scholar 

  • A. Di Renzo, F.P. Di Maio, Comparison of contact-force models for the simulation of collisions in DEM-based granular flow codes. Chem. Eng. Sci. 59, 525–541 (2004)

    Article  Google Scholar 

  • E.R. Domilovskii, A.A. Lushnikov, V.N. Piskunov, A Monte Carlo simulation of coagulation processes. Izvestkya Akademi Nauk SSSR, Fizika Atmosfery I Okeana 15, 194–201 (1979)

    MathSciNet  Google Scholar 

  • D.A. Drew, Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  MATH  Google Scholar 

  • D.A. Drew, S.L. Passman, Theory of Multicomponent Fluids (Springer-Verlag, Berlin, 1999)

    Book  MATH  Google Scholar 

  • N.A. Fleck, L.T. Kuhn, R.M. McMeeking, Yielding of metal powder bonded by isolated contacts. J. Mech. Phys. Solids 40, 1139–1162 (1992)

    Article  MATH  Google Scholar 

  • L. FÓ§ppl, Die Strenge LÓ§sung für die Rollende Reibung (Lebnitz Verlag, Munchen, 1947)

    Google Scholar 

  • M. Frenklach, Method of moments with interpolative closure. Chem. Eng. Sci. 57, 2229–2239 (2002)

    Article  Google Scholar 

  • M. Frenklach, H. Wang, Detailed modeling of soot particle nucleation and growth, Proceedings of the Twenty Third Symposium on Combustion, Combustion Institute, University of Orleans, France, 1991

    Google Scholar 

  • M. Frenklach, H. Wang, in Soot Formation in Combustion: Mechanisms and Models, ed. by H. Bockhorn. Detailed mechanism and modeling of soot formation (Springer-Verlag, Berlin, 1994)

    Google Scholar 

  • G. Fromm, Berechnung des Schlupfes beim Rollen deformierbarer Scheiben, Zeitschr. Angew. Math. Mech 7, 27–58 (1927)

    Article  MATH  Google Scholar 

  • M.U. Germano, U. Piomelli, P. Moin, W.H. Cabot, A dynamic subgrid-scale Eddy viscosity model. Phys. Fluids A 3, 1760–1765 (1991)

    Article  MATH  Google Scholar 

  • G. Gouesbet, A. Berlemont, Eulerian and Lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog. Energy Combust. Sci. 25, 133–159 (1999)

    Article  Google Scholar 

  • J.A. Greenwood, J.B.P. Williamson, Contact of nominally flat surfaces. Proc. Roy. Soc. Lond. A 295, 300–319 (1966)

    Article  Google Scholar 

  • J.A. Greenwood, Adhesion of Elastic Spheres, Proc. R. Soc. Lond. A 453, 1277–1297 (1997)

    Google Scholar 

  • H. Hertz, Ãœber die Berührung fester elastischer Körper (on the contact of elastic solids). J. Reine. u. agnew. Math. 92, 156–171 (1882)

    MATH  Google Scholar 

  • P.R. Heyliger, R.M. McMeeking, Cold plastic compaction of powders by a network model. J. Mech. Phys. Solids 49, 2031–3054 (2001)

    Article  MATH  Google Scholar 

  • T. Hibiki, M. Ishii, Development of one-group interfacial area transport equation in bubbly flow systems. Int. J. Heat Mass Transf. 45, 2351–2372 (2002)

    Article  MATH  Google Scholar 

  • B.P.B. Hoomans, J.A.M. Kuipers, W.J. Briels, W.P. Swaaij, Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard-sphere approach. Chem. Eng. Sci. 51, 99–118 (1996)

    Article  Google Scholar 

  • M.T. Huber, Zur Theorie der Berührung fester elastischer Körper. Ann. Phys. 14, 153–163 (1904)

    Article  MATH  Google Scholar 

  • S.C. Hunter, The Hertz problem for a rigid spherical indenter and a viscoelastic half-space. J. Mech. Phys. Solids 8, 219–234 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  • M. Ishii, T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow (Springer-Verlag, Berlin, 2006)

    Book  MATH  Google Scholar 

  • K.L. Johnson, K. Kendall, A.D. Roberts, Surface energy and the contact of elastic solids. Proc. Roy. Soc. Lond. A 324, 301–313 (1971)

    Article  Google Scholar 

  • D.D. Joseph, T.S. Lundgren, R. Jackson, D.A. Saville, Ensemble averaged and mixture theory equations for incompressible fluid-particle suspensions. Int. J. Multiphase Flow 16, 35–42 (1990)

    Article  MATH  Google Scholar 

  • N.I. Kolev, Multiphase Flow Dynamics 1: Fundamentals, 2nd edn. (Springer-Verlag, Berlin, 2005)

    MATH  Google Scholar 

  • E. Krepper, D. Lucas, H. Prasser, On the modeling of bubbly flow in vertical pipes. Nuc. Eng. Des. 235, 597–611 (2005)

    Article  MATH  Google Scholar 

  • H. Krupp, Particle adhesion – theory and experiment. Adv. Colloid Interf. Sci. 1, 111–239 (1967)

    Article  Google Scholar 

  • H. Krupp, G. Sperling, Z. Phys. 19, 259–265 (1965)

    Google Scholar 

  • L.T. Kuhn, R.M. McMeeking, Power-law creep of powder bonded by isolated contacts. Int. J. Mech. Sci. 34, 563–573 (1992)

    Article  Google Scholar 

  • R.T. Lahey Jr., D.A. Drew. The three-dimensional time and volume averaged conservative equations of two-phase flow, in Advances in Nuclear Science and Technology, vol. 20, ed. by J. Lewins, M. Becker (Plenum, 2001a)

    Google Scholar 

  • R.T. Lahey Jr., D.A. Drew, The analysis of two-phase flow and heat transfer using multidimensional, four field, two-fluid model. Nuc. Eng. Des. 204, 29–44 (2001b)

    Article  Google Scholar 

  • E.H. Lee, J.R.M. Radok, The contact problems for viscoelastic bodies. Trans. ASME J. Appl. Mech. 27, 438–444 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  • J.S. Leszczynski, A discrete model of a two-particle contact applied to cohesive granular materials. Granul. Matter 3, 91–98 (2003)

    Article  MATH  Google Scholar 

  • A. Li, G. Ahmadi, Dispersion and deposition of spherical particles from point sources in a turbulent channel flow. Aerosol Sci. Technol. 16, 209–226 (1992)

    Article  Google Scholar 

  • S.Q. Li, J.S. Marshall, G.Q. Liu, Q. Yao, Adhesive particulate flow: the discrete-element method and its application in energy and environmental engineering. Prog. Energy Combust. Sci. 37, 633–668 (2011)

    Article  Google Scholar 

  • G. Lian, C. Thornton, M.J. Adams, A theoretical study of the liquid bridge force between rigid spherical bodies. J. Colloid Interface Sci. 161, 138–147 (1993)

    Article  Google Scholar 

  • K. Liffman, A direct simulation Monte Carlo method for cluster coagulation. J. Comput. Phys. 100, 116–127 (1992)

    Article  Google Scholar 

  • S.M. Lo, Application of population balance to CFD modeling of bubbly flow via the MUSIG Model, AEAT-1096, AEA Technology (1996)

    Google Scholar 

  • M. Lopez de Bertodano, R.T. Lahey Jr., O.C. Jones, Development of a k-ε model for bubbly two-phase flow. J. Fluids Eng. 116, 128–134 (1994a)

    Article  Google Scholar 

  • M. Lopez de Bertodano, R.T. Lahey Jr., O.C. Jones, Phase distribution in bubbly two-phase flow in vertical ducts. Int. J. Multiphase Flow 20, 805–818 (1994b)

    Article  MATH  Google Scholar 

  • S. Luding, H.J. Herrmann, in Institut für Mechanik, ed. by S. Diebels. Zur Beschreibung komplexen Materialverhaltens (2001), Stuttgart, pp. 121–134

    Google Scholar 

  • S. Luding, M. Lätzel, W. Volk, S. Diebels, H.J. Herrmann, From discrete element simulations to a continuum model. Comput. Methods Appl. Mech. Eng. 191, 21–28 (2001) HYPERLINK "https://pure.tudelft.nl/portal/en/persons/s-luding(b29c6ff7-35b1-4123-8724-e2ee249b6bb3). https://pure.tudelft.nl/portal/en/publications/micromacro-transition-for-cohesive-granular-media(b254117d-f6f6-47e4-8e2e-2eb53e1017b6).html"Micro-Macro Transition for Cohesive Granular Media. in S Diebels (ed.), Zur Beschreibung komplexen Materalverhaltens, Institut für Mechanik.. pp. 121-134.

    Google Scholar 

  • S. Luding, K. Manetsberger, J. Müller, A discrete model for long time sintering. J. Mech. Phys. Solids 53, 455–491 (2005)

    Article  MATH  Google Scholar 

  • A.J. Lurje, Räumliche Probleme der Elastizitätstheorie (Akademie-Verlag, Berlin, 1963)

    MATH  Google Scholar 

  • A. Maisels, F.E. Kruis, H. Fissan, Direct simulation Monte Carlo for simulation nucleation, coagulation and surface growth in dispersed systems. Chem. Eng. Sci. 59, 2231–2239 (2004)

    Article  Google Scholar 

  • D.L. Marchisio, R.O. Fox, Solution of population balance equations using the direct quadrature method of moments. J. Aerosol Sci. 36, 43–73 (2005)

    Article  Google Scholar 

  • D. Maugis, H.M. Pollock, Surface forces, deformation and adherence at metal microcontacts. Acta Metall. 32, 1323–1334 (1984)

    Article  Google Scholar 

  • N. Maw, J.R. Barber, J.N. Fawcett, The oblique impact of elastic spheres. Wear 38, 101–114 (1976)

    Article  Google Scholar 

  • R. McGraw, Description of aerosol dynamics by the quadrature method of moments. Aerosol Sci. Technol. 27, 255–265 (1997)

    Article  Google Scholar 

  • S.D. Mesarovic, K.L. Johnson, Adhesive contact of elastic-plastic spheres. J. Mech. Phys. Solids 48, 2009–2033 (2000)

    Article  MATH  Google Scholar 

  • R.D. Mindlin, Compliance of elastic bodies in contact. Trans. ASME J. Appl. Mech. 16, 259–267 (1949)

    MathSciNet  MATH  Google Scholar 

  • O. Molerus, Theory of yield of cohesive powders. Powder Technol. 12, 259–275 (1975)

    Article  Google Scholar 

  • O. Molerus, Effect of interparticle cohesive forces on the flow behaviour of powders. Powder Technol. 20, 161–175 (1978)

    Article  Google Scholar 

  • R.J. Panton, Flow properties for the continuum viewpoint of a non-equilibrium gas particle mixture. J. Fluid Mech. 31, 273–304 (1968)

    Article  MATH  Google Scholar 

  • Y.H. Pao, Extension of the hertz theory of impact to the viscoelastic case. J. Appl. Phys. 26, 1083–1088 (1955)

    Article  MATH  Google Scholar 

  • F. Parhami, R.M. McMeeking, A network model for initial stage sintering. Mech. Mater. 27, 111–124 (1998)

    Article  Google Scholar 

  • F. Parhami, R.M. McMeeking, A.C.F. Cocks, Z. Suo, A model for the sintering and coarsening of rows of spherical particles. Mech. Mater. 31, 43–61 (1999)

    Article  Google Scholar 

  • D. Ramkrishna, Population Balances. Theory and Applications to Particulate Systems in Engineering (Academic Press, San Diego, 2000)

    Google Scholar 

  • P. Redanz, N.A. Fleck, The compaction of a random distribution of metal cylinders by the discrete element method. Acta Mater. 49, 4325–4335 (2001)

    Article  Google Scholar 

  • H. Rumpf, K. Sommer, K. Steier, Mechanismen der Haftkraftverstärkung bei der Partikelhaftung durch plastisches Verformen, Sintern und viskoelastisches Fließen. Chem. Ing. Tech. 48, 300–307 (1976)

    Article  Google Scholar 

  • M.H. Sadd, Q. Tai, A. Shukla, Contact law effects on wave propagation in particulate materials using distinct element modelling. Int. J. Non-Linear Mechanics 28, 251–265 (1993)

    Article  MATH  Google Scholar 

  • P.G. Saffman, The lift on small sphere in slow sphere flow. J. Fluid Mech. 22, 385–400 (1965)

    Article  MATH  Google Scholar 

  • C. Saluena, T. Pöschel, S.E. Esipov, Dissipative properties of vibrated granular materials. Phys. Rev. E 59, 4422–4425 (1999)

    Article  Google Scholar 

  • H. Schubert, K. Sommer, H. Rumpf, Plastisches Verformen des Kontaktbereiches bei der Partikelhaftung. Chem. Ing. Tech. 48, 716 (1976)

    Article  Google Scholar 

  • J.S. Shirolkar, C.F.M. Coimbra, M.Q. McQuay, Fundamental Aspects of Modeling Turbulent Particle Dispersion in Dilute Flows. Prog. Energy Combust. Sci. 22, 363–399 (1996)

    Google Scholar 

  • J. Smagorinsky, General circulation experiment with the primitive equations: part I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)

    Article  Google Scholar 

  • B. Storakers, S. Biwa, P.L. Larsson, Similarity analysis of inelastic contact. Int. J. Solids Struct. 34, 3061–3083 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • B. Storakers, N.A. Fleck, R.M. McMeeking, The viscoplastic compaction of composite powders. J. Mech. Phys. Solids 47, 785–815 (1999)

    Article  MATH  Google Scholar 

  • X. Sun, S. Kim, M. Ishii, S.G. Beus, Modeling of bubble coalescence and disintegration in confined upward two-phase flow. Nucl. Eng. Des. 230, 3–26 (2004a)

    Article  Google Scholar 

  • X. Sun, S. Kim, M. Ishii, S.G. Beus, Model evaluation of two-group interfacial area transport equation for confined upward flow. Nuc. Eng. Des. 230, 27–47 (2004b)

    Article  Google Scholar 

  • L.M. Tavares, R.P. King, Modeling of particle fracture by repeated impacts using continuum damage mechanics. Powder Technol. 123, 138–146 (2002)

    Article  Google Scholar 

  • H. Tennekes, J.L. Lumley, A First Course in Turbulence (MIT Press, Cambridge, MA, 1976)

    MATH  Google Scholar 

  • C. Thornton, Interparticle sliding in the presence of adhesion. J. Phys. D. Appl. Phys. 24, 1942–1946 (1991)

    Article  Google Scholar 

  • C. Thornton, Coefficient of restitution for collinear collisions of elastic–perfectly plastic spheres. Trans. ASME J. Appl. Mech. 64, 383–386 (1997)

    Article  MATH  Google Scholar 

  • C. Thornton, Z. Ning, A theoretical model for stick/bounce behaviour of adhesive elastic-plastic spheres. Powder Technol. 99, 154–162 (1998)

    Article  Google Scholar 

  • C. Thornton, K.K. Yin, Impact of elastic spheres with and without adhesion. Powder Technol. 65, 153–166 (1991)

    Article  Google Scholar 

  • J. Tomas, Particle adhesion fundamentals and bulk powder consolidation. KONA Powder Part 18, 157–169 (2000)

    Article  Google Scholar 

  • J. Tomas, Assessment of mechanical properties of cohesive particulate solids – part 1: particle contact constitutive model. Part. Sci. Technol. 19, 95–110 (2001)

    Article  Google Scholar 

  • J. Tomas, Fundamentals of cohesive powder consolidation and flow. Granul. Matter 6, 75–86 (2004a)

    Article  MATH  Google Scholar 

  • J. Tomas, Product design of cohesive powders – mechanical properties, compression and flow behavior. Chem. Eng. Technol. 27, 605–618 (2004b)

    Article  Google Scholar 

  • C. Tsai, D. Pui, B. Liu, Elastic flattening and particle adhesion. Aerosol Sci. Technol. 13, 239–255 (1991)

    Article  Google Scholar 

  • P. Vernier, J.M. Delhaye, General two-phase flow equation applied to the thermohydrodynamics of boiling nuclear reactors. Acta Tech. Belg. Energie Primaire 4, 3–43 (1968)

    Google Scholar 

  • H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics – The Finite Volume Method (Prentice Hall, Pearson Education Ltd., England, 1995)

    Google Scholar 

  • L. Vu-Quoc, X. Zhang, An accurate and efficient tangential force–displacement model for elastic frictional contact in particle-flow simulations. Mech. Mater. 31, 235–269 (1999)

    Article  Google Scholar 

  • L. Vu-Quoc, X. Zhang, O.R. Walton, A 3-D discrete-element method for dry granular flows of ellipsoidal particles. Comput. Methods Appl. Mech. Eng. 187, 483–528 (2000)

    Article  MATH  Google Scholar 

  • O.R. Walton, R.L. Braun, Viscosity, Granular Temperature and Stress Calculations for Shearing Assemblies of Inelastic, Frictional Disks. J. Rheology. 30, 949–980 (1986)

    Google Scholar 

  • O.R. Walton, Numerical Simulation of Inelastic, Frictional Particle–Particle Interactions, Particulate Two-Phase Flow (Ed. M. C. Roco), Butterworth–Heinemann, chap. 25, pp. 884–911 (1993)

    Google Scholar 

  • G. Yadigaroglu, R.T. Lahey Jr., On the various forms of the conservation equations in two-phase flow. Int. J. Multiphase Flow 2, 477–494 (1976)

    Article  MATH  Google Scholar 

  • W.H. Yang, The contact problem for viscoelastic bodies. Trans. ASME J. Appl. Mech. 33, 395–401 (1966)

    Article  Google Scholar 

  • G.H. Yeoh, C.P. Cheung, J.Y. Tu, Multiphase Flow Analysis Using Population Balance Modelling (Butterworth-Heinemann, Elsevier, 2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan Heng Yeoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Nature Singapore Pte Ltd.

About this entry

Cite this entry

Yeoh, G.H., Tu, J. (2016). Basic Theory and Conceptual Framework of Multiphase Flows. In: Yeoh, G. (eds) Handbook of Multiphase Flow Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-4585-86-6_1-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-4585-86-6_1-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-4585-86-6

  • Online ISBN: 978-981-4585-86-6

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics