Skip to main content
Log in

Microbial enhanced oil recovery—a modeling study of the potential of spore-forming bacteria

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Microbial enhanced oil recovery (MEOR) utilizes microbes for enhancing the recovery by several mechanisms, among which the most studied are the following: (1) reduction of oil-water interfacial tension (IFT) by the produced biosurfactant and (2) selective plugging by microbes and metabolic products. One of the ways of bacterial survival and propagation under harsh reservoir conditions is formation of spores. A model has been developed that accounts for bacterial growth, substrate consumption, surfactant production, attachment/filtering out, sporulation, and reactivation. Application of spore-forming bacteria is an advantageous novelty of the present approach. The mathematical setup is a set of 1D transport equations involving reactions and attachment. Characteristic sigmoidal curves are used to describe sporulation and reactivation in response to substrate concentrations. The role of surfactant is modification of the relative permeabilities by decreasing the interfacial tension. Attachment of bacteria reduces the pore space available for flow, i.e., the effective porosity and permeability. Clogging of specific areas may occur. An extensive study of the MEOR on the basis of the developed model has resulted in the following conclusions. In order to obtain sufficient local concentrations of surfactant, substantial amounts of substrate should be supplied; however, massive growth of bacteria increases the risk for clogging at the well inlet areas, causing injectivity loss. In such areas, starvation may cause sporulation, reducing the risk of clogging. Substrate released during sporulation can be utilized by attached vegetative bacteria and they will continue growing and producing surfactant, which prolongs the effect of the injected substrate. The simulation scenarios show that application of the spore-forming bacteria gives a higher total production of surfactant and the reduced risk of clogging, leading to an increased period of production and a higher oil recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afrapoli, M.S., Alipour, S., Torsaeter, O.: Fundamental study of pore scale mechanisms in microbial improved oil recovery processes. Transp. Porous Media 90(3), 949–964 (2011)

    Article  Google Scholar 

  2. Al-Wahaibi, Y.M., Grattoni, C.A., Muggeridge, A.H.: Drainage and imbibition relative permeabilities at near miscible conditions. J. Petrol. Sci. Eng. 53, 239–253 (2006)

    Article  Google Scholar 

  3. Alkan, H., Biegel, E., Kruger, M., Sitte, J., Kogler, F., Bultemeier, H., Beier, K., McInerney, M., Herold, A., Hatscher, S.: An integrated meor project; workflow to develop a pilot in a German field. In: SPE-169151 presented at SPE IOR symposium. Tulsa (2014)

  4. Aziz, K., Durlofsky, L., Tchelepi, H.: Notes on petroleum reservoir simulation. Department of Petroleum Engineering, School of Earth Sciences, Stanford University, California (2005)

    Google Scholar 

  5. Balzsi, G., van Oudenaarden, A., Collins, J.: Cellular decision making and biological noise: from microbes to mammals. Cell 144(6), 910–925 (2011). doi:10.1016/j.cell.2011.01.030

    Article  Google Scholar 

  6. Banat, I.M.: Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresource Technol. 51, 1–12 (1995)

    Article  Google Scholar 

  7. Bao, M., Kong, X., Jiang, G., Wang, X., Li, X.: Laboratory study on activating indigenous microorganisms to enhance oil recovery in Shengli Oilfield. J. Petrol. Sci. Eng. 66, 42–46 (2009)

    Article  Google Scholar 

  8. Bass, C., Lappin-Scott, H.: The bad guys and the good guys in petroleum microbiology. Oilfield Rev. 9, 17–25 (1997)

    Google Scholar 

  9. Bedrikovetsky, P.G.: Mathematical theory of oil and gas recovery. Kluwer Academic Publishers, London (1993)

    Book  Google Scholar 

  10. Behesht, M., Roostaazad, R., Farhadpour, F., Pishvaei, M.R.: Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects. Chem. Eng. Technol. 7, 953–963 (2008)

    Article  Google Scholar 

  11. Bødtker, G., Hvidsten, I.V., Barth, T., Torsvik, T.: Hydrocarbon degradation by Dietzia sp. a14101 isolated from an oil reservoir model column. Antonie Van Leeuwenhoek 96(4), 459–469 (2009)

    Article  Google Scholar 

  12. Brown, L.R.: Microbial enhanced oil recovery (MEOR). Curr. Opin. Microbiol. 13, 1–5 (2010)

    Article  Google Scholar 

  13. Bryant, R., Burchfield, T.: Review of microbial technology for improving oil recovery. SPE Reservoir Eng. 4, 151–154 (1989)

    Article  Google Scholar 

  14. Chang, M.M., Chung, F., Bryant, R., Gao, H., Burchfield, T.: Modelling and laboratory investigation of microbial transport phenomena in porous media. SPE-22845 presented at ATCE. Dallas (1991)

  15. Chen, G.: Bacterial interactions and transport in unsaturated porous media. Colloids Surf. B: Biointerfaces 67(2), 265–271 (2008)

    Article  Google Scholar 

  16. Chen, G., Driks, A., Tawfiq, K., Mallozzi, M., Patil, S.: Bacillus anthracis and bacillus subtilis spore surface properties and transport. Colloids Surf. B: Biointerfaces 76(2), 512–518 (2010)

    Article  Google Scholar 

  17. Coats, K.H.: An equation of state compositional model. SPE J. 20, 363–376 (1980)

    Article  Google Scholar 

  18. Darvishi, P., Ayatollahi, S., Mowla, D., Niazi, A.: Biosurfactant production under extreme environmental conditions by an efficient microbial consortium, ercppi-2. Colloids Surf. B: Biointerfaces 84(2), 292–300 (2011)

    Article  Google Scholar 

  19. De Jong, H., Geiselmann, J., Batt, G., Hernandez, C., Page, M.: Qualitative simulation of the initiation of sporulation in Bacillus subtilis. Bull. Math. Biol. 66(2), 261–299 (2004). doi: 10.1016/j.bulm.2003.08.009

    Article  Google Scholar 

  20. Delshad, M., Asakawa, K., Pope, G.A., Sepehrnoori, K.: Simulations of chemical and microbial enhanced oil recovery methods. In: SPE-75237 at the IOR Symposium. Tulsa (2002)

  21. Desouky, S.M., Abdel-Daim, M.M., Sayyouh, M.H., Dahab, A.S.: Modelling and laboratory investigation of microbial enhanced oil recovery. J. Petrol. Sci. Eng. 15, 309–320 (1996)

    Article  Google Scholar 

  22. Dufrene, Y., Boonaert, C., van der Mei, H., Busscher, H., Rouxhet, P.: Probing molecular interactions and mechanical properties of microbial cell surfaces by atomic force microscopy. Ultramicroscopy 86(1–2), 113–120 (2001). doi:10.1016/S0304-3991(00)00079-6

    Article  Google Scholar 

  23. Gray, M.R., Yeung, A., Foght, J.M., Yarranton, H.W.: Potential microbial enhanced oil recovery processes: a critical analysis. In: SPE-114676 Presented at ATCE. Denver (2008)

  24. Gudina, E.J., Pereira, J.F., Costa, R., Coutinho, J.A., Teixeira, J.A., Rodrigues, L.R.: Biosurfactant-producing and oil-degrading bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. J. Hazard. Mater. 261, 106–113 (2013)

    Article  Google Scholar 

  25. Halim, A.Y., Shapiro, A., Eliasson Lantz, A., Nielsen, S.M.: Experimental study of bacterial penetration into chalk rock: mechanisms and effect on permeability. Transp. Porous Med. 101(1), 1–15 (2014). doi: 10.1007/s11242-013-0227-x

    Article  Google Scholar 

  26. Hardman, R.: Chalk reservoirs of the North Sea. Bull. Geol. Soc. Denmark 30, 119–137 (1982)

    Google Scholar 

  27. Hitzman, D.C.: Patent US3032472: Microbiological secondary recovery, USA. www.google.com/patents/US3032472 (1962)

  28. Hitzman, D.O., Dennis, M., Hitzman, D.C.: Recent successes: MEOR using synergistic H2S prevention and increased oil recovery systems. In: SPE-89453 Presented at the IOR Symposium. Tulsa (2004)

  29. Iber, D., Clarkson, J., Yudkin, M.D., Campbell, I.D.: The mechanism of cell differentiation in Bacillus subtilis. Nature 441(7091), 371–374 (2006). doi:10.1038/nature04666

    Article  Google Scholar 

  30. Jenneman, G., Knapp, R., McInerney, M., Menzie, D., Revus, D.: Experimental studies of in-situ microbial enhanced recovery. SPE-10789 SPE J 24, 33–37 (1984)

    Google Scholar 

  31. Kalish, P., Stewart, J., Rogers, W., Bennett, E., et al.: The effect of bacteria on sandstone permeability. J. Petroleum Technol. 16(07), 805–814 (1964)

    Article  Google Scholar 

  32. Kaster, K.M., Hiorth, A., Kjeilen-Eilertsen, G., Boccadoro, K., Lohne, A., Berland, H., Stavland, A., Brakstad, O.G.: Mechanisms involved in microbially enhanced oil recovery. Transp. Porous Med. 91(1), 59–79 (2012)

    Article  Google Scholar 

  33. Khire, J.M.: Bacterial biosurfactants, and their role in microbial enhanced oil recovery (meor). In: Sen, R. (ed.) Biosurfactants, Advances in Experimental Medicine and Biology, vol. 672, pp. 146–157. Springer, New York (2010)

    Google Scholar 

  34. Kim, D.S., Fogler, H.S.: Biomass evolution in porous media and its effects on permeability under starvation conditions. Biotechnol. Bioeng., 69 (2000)

  35. Kim, S.B.: Numerical analysis of bacterial transport in saturated porous media. Hydrol. Process. 20, 1177–1186 (2006)

    Article  Google Scholar 

  36. Kowalewski, E., Ruesltten, I., Steen, K., Bdtker, G., Torster, O.: Microbial improved oil recovery—bacterial induced wettability and interfacial tension effects on oil production. J. Petrol. Sci. Eng. 52, 275–286 (2006)

    Article  Google Scholar 

  37. Lacerda, E.C.M.S., Priimenko, V.I., Pires, A.P.: Microbial EOR: a quantitative prediction of recovery factor. In: SPE-153866 Presented af 18th SPE IOR Symposium. Tulsa (2012)

  38. Lake, L.W.: Enhanced Oil Recovery. Inc, Prentice-Hall (1989)

    Google Scholar 

  39. Lazar, I., Petrisor, I.G., Yen, T.F.: Microbial enhanced oil recovery (MEOR). Petrol Sci. Technol. 25, 1353–1366 (2007). doi:10.1080/10916460701287714

    Article  Google Scholar 

  40. Li, J., Liu, J., Trefry, M.G., Park, J., Liu, K., Haq, B., Johnston, C.D., Volk, H.: Interactions of microbial-enhanced oil recovery processes. Transp. Porous Med. 87(1), 77–104 (2011)

    Article  Google Scholar 

  41. Madigan, M., Martinko, J., Parker, J.: Brock: Biology of microorganisms, 10th edn. Prentice-Hall (2003)

  42. Maudgalya, S., Knapp, R.M., McInerney, M.J.: Microbially enhanced oil recovery technologies. A review of the past, present and future. In: SPE-106978 Presented at the Production and Operations Symposium. Oklahoma City. doi:10.2118/106978-MS (2007)

  43. McInerney, M.J., Javaheri, M., Nagle, D.P.: Properties of the biosurfactant produced bybacillus licheniformis strain jf-2. J. Indust. Microbiol. 5(2–3), 95–101 (1990)

    Article  Google Scholar 

  44. Morimoto, M., Arkin, A., Poolla, K.: Modeling sporulation decisions in bacillus subtilis as optimal evolutionary decision-making. In: Proceedings of the American Control Conference, pp. 3508–3513 (2011)

  45. Murphy, E., Ginn, T.: Modeling microbial processes in porous media. Hydrogeol J. 8, 142–158 (2000)

    Article  Google Scholar 

  46. Nanasaki, Y., Hagiwara, T., Watanabe, H., Sakiyama, T.: Removability of bacterial spores made adherent to solid surfaces from suspension with and without drying. Food Control 21(11), 1472–1477 (2010)

    Article  Google Scholar 

  47. Nerurkar, A.S.: Structural and molecular characteristics of lichenysin and its relationship with surface activity. In: Sen R (ed) Biosurfactants. Springer Science+Business Media, Landes Bioscience, pp. 1 online resource (xxviii, 331 p.) (2010)

  48. Nielsen, S.M.: Microbial enhanced oil recovery—advanced reservoir simulation. PhD thesis. Technical University of Denmark, Lyngby, Denmark (2010)

  49. Nielsen, S.M., Jessen, K., Shapiro, A.A., Michelsen, M.L., Stenby, E.H.: Microbial enhanced oil recovery: 3D simulation with gravity effects. In: SPE-131048 Presented at the EUROPEC/EAGE Conference and Exhibition. Barcelona (2010a)

  50. Nielsen, S.M., Shapiro, A.A., Michelsen, M.L., Stenby, E.H.: 1D simulations for microbial enhanced oil recovery with metabolite partitioning. Transp. Porous Med. 85(3), 785–802 (2010b)

    Article  Google Scholar 

  51. Nielsen, S.M., Nesterov, I., Shapiro, A.: Simulations of microbial-enhanced oil recovery: adsorption and filtration. Transp. Porous Med. 102(2), 227–259 (2014). doi:10.1007/s11242-014-0273-z

    Article  Google Scholar 

  52. van Oort, E., Van Velzen, J., Leerlooijer, K., et al.: Impairment by suspended solids invasion: testing and prediction. SPE Prod. Facil. 8(03), 178–184 (1993)

    Article  Google Scholar 

  53. Park, S., Rittmann, B.E, Bae, W.: Life-cycle kinetic model for endospore-forming bacteria, including germination and sporulation. Biotechnol. Bioeng. 104(5), 1012–1024 (2009)

    Article  Google Scholar 

  54. Perkins, T.J., Swain, P.S.: Strategies for cellular decision-making. Mol Syst Biol 5:–. doi:10.1038/msb.2009.83 (2009)

  55. Ravera, F., Ferrari, M., Liggieri, L.: Adsorption and partitioning of surfactant in liquid-liquid systems. Adv. Colloid Interfac. 88, 129–177 (2000)

    Article  Google Scholar 

  56. Sarkar, A., Georgiou, G., Sharma, M.: Transport of bacteria in porous media: II. A model for convective transport and growth. Biotechnol. Bioeng. 44, 499–508 (1994)

    Article  Google Scholar 

  57. Sarkar, A.K., Sharma, M.M., Georgiou, G.: Compositional numerical simulation of MEOR processes. In: Donaldson, E. (ed.) Microbial Enhancement of Oil Recovery—Recent Advances, Developments in Petroleum Science. Elsevier Science (1991). https://books.google.dk/books?id=aL3aXeA_HfkC

  58. Sen, R.: Biotechnology in petroleum recovery: the microbial EOR. Prog. Energ. Combust. 34(6), 714–724 (2008). doi:10.1016/j.pecs.2008.05.001. http://www.sciencedirect.com/science/article/B6V3W-4ST45P9-1/2/5cc891e8cbdd8ad6b8638716bfe35f35

    Article  Google Scholar 

  59. Sen, T., Das, D., Khilar, K., Suraishkumar, G.: Bacterial transport in porous media: new aspects of the mathematical model. Colloids Surf. A 260, 53–62 (2005)

    Article  Google Scholar 

  60. Shabani-Afrapoli, M., Crescente, C., Li, S., Alipour, S., Torsaeter, O.: Simulation study of displacement mechanisms in microbial improved oil recovery experiments. In: SPE EOR Conference at Oil and Gas West Asia, Muscat, pp. 16–18 (2012)

  61. Soleimani, S., Geel, P.J.V., Isgor, O.B., Mostafa, M.B.: Modeling of biological clogging in unsaturated porous media. J. Contamin Hydrol. 106, 39–50 (2009)

    Article  Google Scholar 

  62. Weiss, T.H., Mills, A.L., Hornberger, G.M., Herman, J.S.: Effect of bacterial cell shape on transport of bacteria in porous media. Environ. Sci. Technol. 29(7), 1737–1740 (1995)

    Article  Google Scholar 

  63. Yakimov, M.M., Timmis, K.N., Wray, V., Fredrickson, H.L.: Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface bacillus licheniformis bas50. Appl. Environ. Microbiol. 61 (5), 1706–1713 (1995)

    Google Scholar 

  64. Yakimov, M.M., Amro, M.M., Bock, M., Boseker, K., Fredrickson, H.L., Kessel, D.G., Timmis, K.N.: The potential of Bacillus licheniformis strains for in situ enhanced oil recovery. J. Petrol. Sci. Eng. 18(1), 147–160 (1997)

    Article  Google Scholar 

  65. Youssef, N., Simpson, D.R., Duncan, K.E., McInerney, M.J., Folmsbee, M., Fincher, T., Knapp, R.M.: In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoirg. Appl. Environ. Microbiol. 73, 1239–1247 (2007). doi:10.1128/AEM.02264-06. http: //aem.asm.org/cgi/reprint/73/4/1239.pdf

    Article  Google Scholar 

  66. Zahner, R.L, Tapper, S.J., Marcotte, B.W.G., Govreau, B.R.: Lessons learned from applications of a new organic-oil-recovery method that activates resident microbes. SPE Reserv. Eval. Eng. 15(6), 688–694 (2012). doi:10.2118/145054-PA

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Nielsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, S.M., Nesterov, I. & Shapiro, A.A. Microbial enhanced oil recovery—a modeling study of the potential of spore-forming bacteria. Comput Geosci 20, 567–580 (2016). https://doi.org/10.1007/s10596-015-9526-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9526-3

Keywords

Navigation