Skip to main content
Log in

Reservoir uncertainty tolerant, proactive control of intelligent wells

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Intelligent wells (I-wells) provide layer-by-layer production and injection control. This flow control flexibility relies on the real-time operation of multiple, downhole interval control valves (ICVs) installed across the well completion intervals. Proactive control of I-wells, with its ambition of creating an optimal, operational strategy of ICVs over the full well lifetime, is a high-dimensional optimization problem with a computationally demanding and uncertain objective function based on one or more simulated reservoir model(s). This paper illustrates how a stochastic search algorithm based on the simultaneous perturbation stochastic approximation (SPSA) coupled with a utility function approach to define an objective function to account for the uncertainty in the reservoir’s description can efficiently solve the proactive, I-well control problem. The utility function accounts for both the expectation and variance of the net present value (NPV) by modifying the objective function to consider multiple reservoir model realizations. Simultaneous optimization of full ensemble of model realizations is prohibitively expensive. By contrast, choosing a small ensemble of model realizations is computationally less demanding, but the small ensemble has to be itself selected. We introduce the use of k-means clustering for selecting a representative ensemble of model realizations that performs in an equivalent manner to all available realizations. A distance measure, tailored to the proactive optimization application, is used to define the similarity/dissimilarity of the different realizations which is then employed to perform the clustering. Moreover, we show that this robust proactive optimization process can either focus on the specific objective of increasing the mean or of reducing the variance (this is achieved via adjustable weights in the utility function). The relative importance of these conflicting objectives has to be taken into account during the model realization selection process to ensure the near-global success of the obtained control scenario. The proposed robust optimization framework has been tested on a representative test case (PUNQ-S3). This is a small field developed with an intelligent producer in which the uncertainty in the model has been quantified by several geological realizations. Our results demonstrate the computational efficiency of employing an ensemble of systematically selected realizations rather than the traditional methods that rely on either a single model realization or a randomly selected ensemble of realizations. Our results show the success of the developed framework in identifying control scenarios that correspond to an acceptable improvement in the expected added value at a controlled risk level while substantially reducing the computation time compared to using full ensemble of model realizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson, M.: Intelligent well completions (2003)

  2. Peters, L., Arts, R., Brouwer, G., Geel, C.: Results of the Brugge benchmark study for flooding optimisation and history Matching (2010)

  3. Grebenkin, I.M., Davies, D.R.: A novel optimisation algorithm for inflow control valve management. In: SPE Europec/EAGE annual conference, SPE-154472-MS (2012)

  4. Alghareeb, Z., Horne, R.N., Yuen, B.B.W., Shenawi, S.H.: Proactive optimization of oil recovery in multilateral wells using real time production data. In: SPE annual technical conference and exhibition, SPE-124999-MS (2009)

  5. Almeida, L.F., Vellasco, M.M.B.R., Pacheco, M.A.C.: Optimization system for valve control in intelligent wells under uncertainties. J. Pet. Sci. Eng. 73(1–2), 129–140 (2010). doi:10.1016/j.petrol.2010.05.013

    Article  Google Scholar 

  6. Haghighat Sefat, M., Muradov, K.M., Davies, D.R.: Field management by proactive optimisation of intelligent wells—a practical approach. In: SPE Middle East intelligent energy conference and exhibition, SPE-167453-MS (2013)

  7. Guyaguler, B., Byer, T.J.: A new rate-allocation-optimization framework. SPE d. Oper. 23(04), 448–457 (2008). doi:10.2118/105200-PA

    Google Scholar 

  8. Wang, C., Li, G., Reynolds, A.C.: Production optimization in closed-loop reservoir management. SPE J. 14(3), 506–523 (2009). doi:10.2118/109805-pa

    Article  Google Scholar 

  9. Jansen, J.-D., Brouwer, R., Douma, S.G.: Closed loop reservoir management. In: SPE reservoir simulation symposium, SPE-119098-MS (2009)

  10. Brouwer, D.R., Jansen, J.-D.: Dynamic optimization of waterflooding with smart wells using optimal control theory. SPE J. 9(4), 391–402 (2004). doi:10.2118/78278-pa

    Article  Google Scholar 

  11. Sarma, P., Chen, W.H., Durlofsky, L.J., Aziz, K.: Production optimization with adjoint models under nonlinear control-state path inequality constraints. In: Intelligent energy conference and exhibition, SPE-99959-MS (2006)

  12. Suwartadi, E., Krogstad, S., Foss, B.A.: On state constraints of adjoint optimization in oil reservoir waterflooding. In: SPE/EAGE reservoir characterization and simulation conference, SPE-125557-MS (2009)

  13. Giles, M., Pierce, N.: An introduction to the adjoint approach to design. Flow, Turbulence and Combustion 65(3–4), 393–415 (2000). doi:10.1023/a:1011430410075

    Article  Google Scholar 

  14. Essen, G.v., Hof, P.V.d., Jansen, J.-D.: Hierarchical long-term and short-term production optimization. SPE J. 16(1), 191–199 (2011). doi:10.2118/124332-pa

    Article  Google Scholar 

  15. Asadollahi, M., Naevdal, G.: Waterflooding optimization using gradient based methods. In: SPE/EAGE reservoir characterization and simulation conference, SPE-125331-MS (2009)

  16. ECLIPSE: ECLIPSE reference manuals. In: Technical description, Chapter 49, vol. Version 2012. 1. Schlumberger, Abingdon (2012)

  17. Forouzanfar, F., Li, G., Reynolds, A.C.: A two-stage well placement optimization method based on adjoint gradient. In: SPE annual technical conference and exhibition, SPE-135304-MS (2010)

  18. Mohaghegh, S.: Virtual-intelligence applications in petroleum engineering: part 2—evolutionary computing. J. Pet. Technol. 52(10), 40–46 (2000). doi:10.2118/61925-ms

    Article  Google Scholar 

  19. Zingg, D.W., Nemec, M., Pulliam, T.H.: A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. European Journal of Computational Mechanics/Revue Européenne de Mécanique Numérique 17(1–2), 103–126 (2008). doi:10.3166/remn.17.103-126

    Article  Google Scholar 

  20. Pinto, M.A.S., Barreto, C.E., Schiozer, D.J.: Optimization of proactive control valves of producer and injector smart wells under economic uncertainty. In: SPE Europec/EAGE annual conference, SPE-154511-MS (2012)

  21. Asadollahi, M., Nævdal, G., Dadashpour, M., Kleppe, J.: Production optimization using derivative free methods applied to Brugge field case. J. Petrol. Sci. Eng. 114(0), 22–37 (2014). doi:10.1016/j.petrol.2013.12.004

    Article  Google Scholar 

  22. van Essen, G., Zandvliet, M., Van den Hof, P., Bosgra, O., Jansen, J.-D.: Robust waterflooding optimization of multiple geological scenarios. doi:10.2118/102913-PA (2009)

  23. Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization. SPE J. 14(4), 634–645 (2009). doi:10.2118/112873-PA

    Article  Google Scholar 

  24. Lorentzen, R.J., Berg, A., Naevdal, G., Vefring, E.H.: A new approach for dynamic optimization of water flooding problems (2006)

  25. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37(3), 332–341 (1992). doi:10.1109/9.119632

    Article  Google Scholar 

  26. Do, S., Reynolds, A.: Theoretical connections between optimization algorithms based on an approximate gradient. Comput. Geosci. 17(6), 959–973 (2013). doi:10.1007/s10596-013-9368-9

    Article  Google Scholar 

  27. Haghighat Sefat, M., Muradov, K.M., Elsheikh, A.H., Davies, D.R.: Proactive optimization of intelligent well production using stochastic gradient-based algorithms. Submitted (2015)

  28. Spall, J., Hill, S., Stark, D. Theoretical framework for comparing several stochastic optimization approaches. In: Calafiore, G., Dabbene, F. (eds.) : Probabilistic and randomized methods for design under uncertainty, pp. 99–117. Springer, London (2006)

  29. Zhao, H., Chen, C., Do, S., Oliveira, D., Li, G., Reynolds, A.: Maximization of a dynamic quadratic interpolation model for production optimization. doi:10.2118/141317-PA (2013)

  30. Zhao, H., Li, Y., Yao, J., Zhang, K.: Theoretical research on reservoir closed-loop production management. Sci. China Technol. Sci. 54(10), 2815–2824 (2011). doi:10.1007/s11431-011-4465-2

    Article  Google Scholar 

  31. Chen, Y., Oliver, D.S.: Ensemble-based closed-loop optimization applied to Brugge field (2009)

  32. Chen, C., Li, G., Reynolds, A.C.: Robust constrained optimization of short and long-term NPV for closed-loop reservoir management (2011)

  33. Haghighat Sefat, M., Muradov, K.M., Elsheikh, A.H., Davies, D.R.: Reservoir uncertainty-tolerant, proactive control of intelligent wells. In: ECMOR XIV—14th European conference on the mathematics of oil recovery (2014)

  34. Park, K.: Modeling uncertainty in metric space. PhD Thesis, Stanford University (2011)

  35. Scheidt, C., Caers, J.: Uncertainty quantification in reservoir performance using distances and kernel methods—application to a West Africa deepwater turbidite reservoir. doi:10.2118/118740-PA (2009)

  36. Wang, H., Echeverría-Ciaurri, D., Durlofsky, L., Cominelli, A.: Optimal well placement under uncertainty using a retrospective optimization framework. SPE J. 17(1), 112–121 (2012). doi:10.2118/141950-PA

    Article  Google Scholar 

  37. Speyer, J.L., Jacobson, D.H.: Primer on optimal control theory. Soc. Ind. Appl. Math. (2010)

  38. Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)

    Article  Google Scholar 

  39. Chen, W., Wiecek, M.M., Zhang, J.: Quality utility—a compromise programming approach to robust design. J. Mech. Des. 121(2), 179–187 (1999). doi:10.1115/1.2829440

    Article  Google Scholar 

  40. Zang, C., Friswell, M.I., Mottershead, J.E.: A review of robust optimal design and its application in dynamics. Comput. Struct. 83(4–5), 315–326 (2005). doi:10.1016/j.compstruc.2004.10.007

    Article  Google Scholar 

  41. Petvipusit, K., Elsheikh, A., Laforce, T., King, P., Blunt, M.: Robust optimisation of CO2 sequestration strategies under geological uncertainty using adaptive sparse grid surrogates. Comput. Geosci. 18(5), 763–778 (2014). doi:10.1007/s10596-014-9425-z

    Article  Google Scholar 

  42. Sadegh, P., Spall, J.C.: Optimal random perturbations for stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 43(10), 1480–1484 (1998). doi:10.1109/9.720513

    Article  Google Scholar 

  43. Kiefer, J., Wolfowitz, J.: Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23(3), 462–466 (1952). doi:10.2307/2236690

    Article  Google Scholar 

  44. Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Navig. Electron. 34(3), 817–823 (1998). doi:10.1109/7.705889

    Article  Google Scholar 

  45. Spall, J.C.: Introduction to stochastic search and optimization: estimation, simulation, and control. Wiley (2003)

  46. Gao, G., Li, G., Reynolds, A.C.: A stochastic optimization algorithm for automatic history matching. SPE J. 12(2), 196–208 (2007). doi:10.2118/90065-pa

    Article  Google Scholar 

  47. Tavakoli, R., Srinivasan, S., Wheeler, M.F.: Rapid updating of stochastic models by use of an ensemble-filter approach. SPE J. 19(3), 500–513 (2014). doi:10.2118/163673-PA

    Article  Google Scholar 

  48. Demyanov, V., Gopa, K., Arnold, D., Elfeel, M.A.: Production optimisation under uncertainty in fractured reservoirs. In: ECMOR XIV—14th European conference on the mathematics of oil recovery (2014)

  49. Borg, I., Groenen, P.J.: Modern multidimensional scaling: theory and applications. Springer (2005)

  50. Seber, G.A.F.: Multivariate observations. Wiley (2004)

  51. Floris, F.J.T., Bush, M.D., Cuypers, M., Roggero, F., Syversveen, A.-R.: Methods for quantifying the uncertainty of production forecasts: a comparative study. Pet. Geosci. 7(S), S87–S96 (2001). doi:10.1144/petgeo.7.S.S87

    Article  Google Scholar 

  52. Grebenkin, I., Davies, D.R.: Analysis of the impact of an intelligent well completion on the oil production uncertainty. In: SPE Russian oil and gas conference and exhibition, SPE-136335-MS (2010)

  53. Ben-Hur, A., Elisseeff, A., Guyon, I.: A stability based method for discovering structure in clustered data. In: Pacific symposium on biocomputing 2001, pp. 6–17

  54. Thorndike, R.: Who belongs in the family? Psychometrika 18(4), 267–276 (1953). doi:10.1007/BF02289263

    Article  Google Scholar 

  55. Bowman, A.W., Azzalini, A.: Applied smoothing techniques for data analysis : the kernel approach with S-Plus illustrations: The kernel approach with S-Plus illustrations. OUP Oxford (1997)

  56. Olken, F.: Random sampling from databases. University of California at Berkeley (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Haghighat Sefat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haghighat Sefat, M., Elsheikh, A.H., Muradov, K.M. et al. Reservoir uncertainty tolerant, proactive control of intelligent wells. Comput Geosci 20, 655–676 (2016). https://doi.org/10.1007/s10596-015-9513-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9513-8

Keywords

Navigation