Skip to main content
Log in

A robust, multi-solution framework for well placement and control optimization

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Field development and control optimization aim to maximize the economic profit of oil and gas production while considering several sources of uncertainty. This results in a high-dimensional optimization problem with a computationally demanding and uncertain objective function based on the simulated reservoir model. The limitations of many current robust optimization methods are: 1) it is single-level optimization (e.g. optimization of well locations/placement only; or of well production/injection control variables only) that ignores interference between the control variables from different levels; and 2) they provide a single optimal solution, whereas operational problems often add unexpected constraints likely to reduce that optimal, inflexible solution to a sub-optimal scenario. This paper presents a robust, multi-solution framework based on sequential iterative optimization of control variables at multiple levels using the Simultaneous Perturbation Stochastic Approximation (SPSA) optimization algorithm. A systematic realization selection process, tailored to the objective of the subsequent optimization stage, is used to select a small representative ensemble of reservoir model realizations to be used for calculating the expected objective value. The estimated gradients are calculated using a 1:1 ratio mapping ensemble of control variables perturbations at each iteration onto the ensemble of selected reservoir model realizations to reduce the computational cost. An ensemble of close-to-optimum solutions is then chosen from each level (e.g. from the well placement optimization level) and transferred to the next level of optimization (e.g. where the control settings are optimized), and this loop continues until no significant improvement is observed in the expected objective value. Fit-for-purpose clustering techniques are developed to systematically select an ensemble of solutions, with maximum differences in control variables but close-to-optimum objective values, at each optimization level. The proposed framework has been tested on a benchmark case study (Brugge field). Multiple solutions are obtained with different well locations and control settings but close-to-optimum objective values. We show that suboptimal solutions from an early optimization level can approach and even outdo the optimal one at the next level(s). Results demonstrate the advantage of the developed framework in more efficient exploration of the search space and providing the much-needed operational flexibility to field operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Ismael, M., Awotunde, A., Al-Yousef, H. and Al-Hashim, H.: A well placement optimization constrained to regional pressure balance. In SPE Europec featured at 80th EAGE conference and exhibition. OnePetro (2018)

  2. Wang, H., Ciaurri, D.E., Durlofsky, L.J., Cominelli, A.: Optimal well placement under uncertainty using a retrospective optimization framework. SPE J. 17(01), 112–121 (2012)

    Article  Google Scholar 

  3. Li, L., Jafarpour, B.: A variable-control well placement optimization for improved reservoir development. Comput. Geosci. 16(4), 871–889 (2012)

    Article  Google Scholar 

  4. Bergey, P.: Generative well pattern design—principles, implementation, and test on OLYMPUS challenge field development problem. Comput. Geosci. 1–16 (2019)

  5. Busby, D., Pivot, F., Tadjer , A.: Use of data analytics to improve well placement optimization under uncertainty. In: Abu Dhabi International Petroleum Exhibition & Conference. OnePetro (2017)

  6. Lepphaille, M., Thenon, A., Bergey, P., Salley, B., Ben Sadok, A. and Koeck, C.: Generative well pattern design applied to a Giant mature field leads to the identification of major drilling expenditure reduction opportunity. In: Abu Dhabi International Petroleum Exhibition & Conference. OnePetro (2020)

  7. Lu, R., Reynolds, A.C.: Joint optimization of well locations, types, drilling order, and controls given a set of potential drilling paths. SPE J. 25, 1285–1306 (2020)

    Article  Google Scholar 

  8. Jiang, S., Sun, W., Durlofsky, L.J.: A data-space inversion procedure for well control optimization and closed-loop reservoir management. Comput. Geosci. 24, 1–19 (2019)

    Google Scholar 

  9. Haghighat Sefat, M.: Proactive optimisation of intelligent wells under uncertainty. Heriot-Watt University (2016)

    Google Scholar 

  10. de Brito, D.U., Durlofsky, L.J.: Well control optimization using a two-step surrogate treatment. J. Pet. Sci. Eng. 187, 106565 (2020)

    Article  Google Scholar 

  11. de Brito, D.U., Durlofsky, L.J.: Field development optimization using a sequence of surrogate treatments. Comput. Geosci. 25(1), 35–65 (2021)

    Article  Google Scholar 

  12. Salehian, M., Sefat, M.H., Muradov, K.: Robust Integrated Optimization of Well Placement and Control under Field Production Constraints. J. Pet. Sci. Eng. 205, 108926 (2021)

    Article  Google Scholar 

  13. Barros, E., Van den Hof, P., Jansen, J.: Informed production optimization in hydrocarbon reservoirs. Optim. Eng. 21(1), 25–48 (2020)

    Article  Google Scholar 

  14. Fonseca, R., et al.: Introduction to the special issue: overview of OLYMPUS optimization benchmark challenge. Springer (2020)

    Google Scholar 

  15. de Moraes, R.J., Fonseca, R.M., Helici, M.A., Heemink, A.W., Jansen, J.D.: An efficient robust optimization workflow using multiscale simulation and stochastic gradients. J. Pet. Sci. Eng. 172, 247–258 (2019)

    Article  Google Scholar 

  16. Fonseca, R.M., Reynolds, A.C., Jansen, J.D.: Generation of a Pareto front for a bi-objective water flooding optimization problem using approximate ensemble gradients. J. Pet. Sci. Eng. 147, 249–260 (2016)

    Article  Google Scholar 

  17. Brouwer, D.R., Jansen, J.: Dynamic optimization of water flooding with smart wells using optimal control theory. In: European petroleum conference. OnePetro (2002)

  18. van Essen, G., Zandvliet, M., van den Hof, P., Bosgra, O., Jansen, J.D.: Robust waterflooding optimization of multiple geological scenarios. SPE J. 14(01), 202–210 (2009)

    Article  Google Scholar 

  19. Isebor, O.J., Durlofsky, L.J., Ciaurri, D.E.: A derivative-free methodology with local and global search for the constrained joint optimization of well locations and controls. Comput. Geosci. 18(3–4), 463–482 (2014)

    Article  Google Scholar 

  20. Shirangi, M.G., Volkov, O., Durlofsky, L.J.: Joint optimization of economic project life and well controls. SPE J. 23(02), 482–497 (2018)

    Article  Google Scholar 

  21. Lu, R., Reynolds, A.: Joint optimization of well locations, types, drilling order and controls given a set of potential drilling paths. In: SPE reservoir simulation conference. Society of Petroleum Engineers (2019)

  22. Lu, R., Forouzanfar, F., Reynolds, A.C.: Bi-objective optimization of well placement and controls using stosag. In: SPE reservoir simulation conference. Society of Petroleum Engineers (2017)

  23. Li, L., Jafarpour, B., Mohammad-Khaninezhad, M.R.: A simultaneous perturbation stochastic approximation algorithm for coupled well placement and control optimization under geologic uncertainty. Comput. Geosci. 17(1), 167–188 (2013)

    Article  Google Scholar 

  24. Forouzanfar, F., Poquioma, W.E., Reynolds, A.C.: Simultaneous and sequential estimation of optimal placement and controls of wells with a covariance matrix adaptation algorithm. SPE J. 21(02), 501–521 (2016)

    Article  Google Scholar 

  25. Güyagüler, B., Horne, R.N., Rogers, L., Rosenzweig, J.J.: Optimization of well placement in a Gulf of Mexico waterflooding project. SPE Reserv. Eval. Eng. 5(03), 229–236 (2002)

    Article  Google Scholar 

  26. Almeida, L.F., Vellasco, M.M., Pacheco, M.A.: Optimization system for valve control in intelligent wells under uncertainties. J. Pet. Sci. Eng. 73(1–2), 129–140 (2010)

    Article  Google Scholar 

  27. Harb, A., Kassem, H., Ghorayeb, K.: Black hole particle swarm optimization for well placement optimization. Comput. Geosci. 24, 1–22 (2019)

    Google Scholar 

  28. Sarma, P., Aziz, K., Durlofsky, L.J.: Implementation of adjoint solution for optimal control of smart wells. In: SPE reservoir simulation symposium. Society of Petroleum Engineers (2005)

  29. Van Essen, G., Van den Hof, P., Jansen, J.-D.: Hierarchical long-term and short-term production optimization. SPE J. 16(01), 191–199 (2011)

    Article  Google Scholar 

  30. Zandvliet, M., Handels, M., van Essen, G., Brouwer, R., Jansen, J.D.: Adjoint-based well-placement optimization under production constraints. SPE J. 13(04), 392–399 (2008)

    Article  Google Scholar 

  31. Jansen, J.-D., Brouwer, R., Douma, S.G.: Closed loop reservoir management. In: SPE reservoir simulation symposium. OnePetro (2009)

  32. Jansen, J.D.: Adjoint-based optimization of multi-phase flow through porous media–a review. Comput. Fluids. 46(1), 40–51 (2011)

    Article  Google Scholar 

  33. Fonseca, R.R.M., Chen, B., Jansen, J.D., Reynolds, A.: A stochastic simplex approximate gradient (StoSAG) for optimization under uncertainty. Int. J. Numer. Methods Eng. 109(13), 1756–1776 (2017)

    Article  Google Scholar 

  34. Zingg, D.W., Nemec, M., Pulliam, T.H.: A comparative evaluation of genetic and gradient-based algorithms applied to aerodynamic optimization. Eur. J. Comput. Mech./Revue Européenne de Mécanique Numérique. 17(1–2), 103–126 (2008)

    Google Scholar 

  35. Fonseca, R., et al.: Ensemble-based hierarchical multi-objective production optimization of smart wells. Comput. Geosci. 18(3–4), 449–461 (2014)

    Article  Google Scholar 

  36. Jesmani, M., et al.: Application of simultaneous perturbation stochastic approximation to well placement optimization under uncertainty. In: ECMOR XV-15th European conference on the mathematics of oil recovery. European Association of Geoscientists & Engineers (2016)

  37. Haghighat Sefat, M., Elsheikh, A.H., Muradov, K.M., Davies, D.R.: Reservoir uncertainty tolerant, proactive control of intelligent wells. Comput. Geosci. 20(3), 655–676 (2016)

    Article  Google Scholar 

  38. Lu, R., Forouzanfar, F., Reynolds, A.C.: An efficient adaptive algorithm for robust control optimization using StoSAG. J. Pet. Sci. Eng. 159, 314–330 (2017)

    Article  Google Scholar 

  39. Guyaguler, B., Horne, R.N.: Uncertainty assessment of well placement optimization. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers 2001

  40. Chen, C., Li, G., Reynolds, A.: Robust constrained optimization of short-and long-term net present value for closed-loop reservoir management. SPE J. 17(03), 849–864 (2012)

    Article  Google Scholar 

  41. Jesmani, M., Jafarpour, B., Bellout, M.C., Foss, B.: A reduced random sampling strategy for fast robust well placement optimization. J. Pet. Sci. Eng. 184, 106414 (2020)

    Article  Google Scholar 

  42. Shirangi, M.G., Durlofsky, L.J.: A general method to select representative models for decision making and optimization under uncertainty. Comput. Geosci. 96, 109–123 (2016)

    Article  Google Scholar 

  43. Li, G., Reynolds, A.C.: Uncertainty quantification of reservoir performance predictions using a stochastic optimization algorithm. Comput. Geosci. 15(3), 451–462 (2011)

    Article  Google Scholar 

  44. Gao, G., Li, G., Reynolds, A.C.: A stochastic optimization algorithm for automatic history matching. In: SPE annual technical conference and exhibition. Society of Petroleum Engineers (2004)

  45. Salehian, M., Haghighat Sefat, M., Muradov, K.: A Multi-Solution Optimization Framework for Well Placement and Control SPE Reservoir Evaluation & Engineering (2020)

  46. Isebor, O.J., Durlofsky, L.J.: Biobjective optimization for general oil field development. J. Pet. Sci. Eng. 119, 123–138 (2014)

    Article  Google Scholar 

  47. Schlumberger, ECLIPSE® User Manual. Technical Description, Schlumberger Ltd (2017)

  48. Spall, J.C.: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control. 37(3), 332–341 (1992)

    Article  Google Scholar 

  49. Spall, J.C.: Implementation of the simultaneous perturbation algorithm for stochastic optimization. IEEE Trans. Aerosp. Electron. Syst. 34(3), 817–823 (1998)

    Article  Google Scholar 

  50. Spall, J.C.: Introduction to stochastic search and optimization: estimation, simulation, and control, vol. 65. John Wiley & Sons (2005)

    Google Scholar 

  51. Wang, C., Li, G., Reynolds, A.C.: Production optimization in closed-loop reservoir management. SPE J. 14(03), 506–523 (2009)

    Article  Google Scholar 

  52. Peters, L., et al.: Results of the Brugge benchmark study for flooding optimization and history matching. SPE Reserv. Eval. Eng. 13(03), 391–405 (2010)

    Article  Google Scholar 

  53. Chen, Y., Oliver, D.S., Zhang, D.: Efficient ensemble-based closed-loop production optimization. SPE J. 14(04), 634–645 (2009)

    Article  Google Scholar 

  54. Seber, G.A.: Multivariate observations, vol. 252. John Wiley & Sons (2009)

    Google Scholar 

  55. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  56. Borg, I., Groenen, P.: Modern multidimensional scaling: theory and applications. J. Educ. Meas. 40(3), 277–280 (2003)

    Article  Google Scholar 

  57. Scheidt, C., Caers, J.: Uncertainty quantification in reservoir performance using distances and kernel methods--application to a west africa Deepwater turbidite reservoir. SPE J. 14(04), 680–692 (2009)

    Article  Google Scholar 

  58. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  59. Peters, E., Chen, Y., Leeuwenburgh, O., Oliver, D.S.: Extended Brugge benchmark case for history matching and water flooding optimization. Comput. Geosci. 50, 16–24 (2013)

    Article  Google Scholar 

  60. Yang, C., et al.: Robust optimization of SAGD operations under geological uncertainties. In: SPE reservoir simulation symposium. Society of Petroleum Engineers (2011)

  61. Thanh, H.V., et al.: Robust optimization of CO2 sequestration through a water alternating gas process under geological uncertainties in Cuu Long Basin, Vietnam. J. Nat. Gas Sci. Eng. 76, 103208 (2020)

    Article  Google Scholar 

  62. Park, K.: Modeling uncertainty in metric space. Stanford University (2011)

    Google Scholar 

Download references

Acknowledgments

Authors are thankful to the sponsors of the “Value from Advanced Wells II” Joint Industry Project at Heriot-Watt University for providing financial support and Schlumberger for allowing academic access to their software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Salehian.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehian, M., Sefat, M.H. & Muradov, K. A robust, multi-solution framework for well placement and control optimization. Comput Geosci 26, 897–914 (2022). https://doi.org/10.1007/s10596-021-10099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-021-10099-2

Keywords

Navigation