Skip to main content

Advertisement

Log in

The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Orchid bees (Hymenoptera, Apidae, Euglossini) are important pollinators of many plant families in Neotropical forests, habitats that have become increasingly degraded and fragmented by agricultural practices. To understand the extent to which loss of natural habitat and isolation has affected the genetic diversity and diploid male production (DMP) of two orchid bee species, Euglossa dilemma and Euglossa viridissima, we collected and genotyped 1686 males at five microsatellite loci and tested for differences in allelic richness, heterozygosity and DMP across three different types of land use (natural, agricultural and urban) and between mainland and island populations in the Yucatan Peninsula of Mexico. We also investigated the impact of land use and geographic isolation on gene flow. Euglossa dilemma and E. viridissima seemed to be particularly resilient to loss of natural habitat; in locations with human impact, we did not find reduced genetic diversity, and populations generally showed very little population genetic structure. Only on islands did E. dilemma show significantly reduced genetic diversity. Even after accounting for putative null alleles, DMP was very low (0.2–1.3%) across all sampling sites, including on islands. We therefore suggest that DMP is an insensitive measure of inbreeding and population decline in our two study species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Anonymous (2010) http://comey.yucatan.gob.mx/marco_files/II.6_Desarrollo_urbano_y_OT.pdf.

  • Barbier EB (2004) Agricultural expansion, resource booms and growth in Latin America: implication for long-run economic development. World Dev 32:137–157

    Article  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48. doi:10.18637/jss.v067.i01

    Article  Google Scholar 

  • Beye M, Hasselmann M, Fondrk MK, Page RE Jr, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429

    Article  CAS  PubMed  Google Scholar 

  • Boff S, Soro A, Paxton R, Alves-dos-Santos I (2014) Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee. Conserv Genet 15:1123–1135. doi:10.1007/s10592-014-0605-0

    Article  CAS  Google Scholar 

  • Bohonak A (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Brand P, Ramirez S, Leese F, Quezada-Euan J, Tollrian R, Eltz T (2015) Rapid evolution of chemosensory receptor genes in a pair of sibling species of orchid bees (Apidae: Euglossini). BMC Evol Biol 15:176

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416. doi:10.1051/apido/2009019

    Article  Google Scholar 

  • Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. Proc Natl Acad Sci USA 108:662–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerântola NM, Oi CA, Cervini M, Del Lama A (2011) Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie 42:214–222. doi:10.1051/apido/2010055

    Article  Google Scholar 

  • Cincotta RP, Engelman R (2000) Nature’s place: human population and the future of biological diversity. Population Action International, Washington, DC

    Google Scholar 

  • Cocom Pech M, May-Itzá WdJ, Medina Medina L, Quezada-Euán J (2008) Sociality in Euglossa (Euglossa) viridissima Friese (Hymenoptera, Apidae, Euglossini). Insectes Soc 55:428–433. doi:10.1007/s00040-008-1023-4

    Article  Google Scholar 

  • Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435

    Article  Google Scholar 

  • Cook JM, Crozier RH (1995) Sex determination and population biology in the hymenoptera. Trends Ecol Evol 10:281–286

    Article  CAS  PubMed  Google Scholar 

  • Coulon A, Fitzpatrick JW, Bowman R, Stith BM, Makarewich CA, Stenzler LM, Lovette IJ (2008) Congruent population structure inferred from dispersal behaviour and intensive genetic surveys of the threatened Florida scrub-jay (Aphelocoma cœrulescens). Mol Ecol 17:1685–1701. doi:10.1111/j.1365-294X.2008.03705.x

    Article  CAS  PubMed  Google Scholar 

  • Crozier RH (1971) Heterozygosity and sex determination in haplo-diploidy. Am Nat 105:399–412. doi:10.2307/2459509

    Article  Google Scholar 

  • Crozier RH, Pamilo P (1996) Evolution of social insect colonies. Sex allocation and Kin selection. Oxford University Press, Oxford

    Google Scholar 

  • Darvill B, Ellis J, Lye G, Goulson D (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol Ecol 15:601–611. doi:10.1111/j.1365-294x.2006.02797.x

    Article  CAS  PubMed  Google Scholar 

  • Davis ES, Murray TE, Fitzpatrick U, Brown MJF, Paxton RJ (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935. doi:10.1111/j.1365-294X.2010.04868.x

    Article  PubMed  Google Scholar 

  • de Boer J, Groenen M, Pannebakker B, Beukeboom L, Kraus R (2015) Population-level consequences of complementary sex determination in a solitary parasitoid. BMC Evol Biol 15:98

    Article  PubMed  PubMed Central  Google Scholar 

  • Dieringer D, Schlötterer C (2003) microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169. doi:10.1046/j.1471-8286.2003.00351.x

    Article  CAS  Google Scholar 

  • Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394. doi:10.1146/annurev.es.13.110182.002105

    Article  Google Scholar 

  • Dufresnes C, Perrin N (2015) Effect of biogeographic history on population vulnerability in European amphibians. Conserv Biol 29:1235–1241. doi:10.1111/cobi.12490

    Article  PubMed  Google Scholar 

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  PubMed  Google Scholar 

  • Ellis J, Knight M, Darvill B, Goulson D (2006) Extremely low effective population sizes, genetic structuring and reduced genetic diversity in a threatened bumblebee species, Bombus sylvarum (Hymenoptera: Apidae). Mol Ecol 15:4375–4386

    Article  CAS  PubMed  Google Scholar 

  • Eltz T et al (2008) An olfactory shift is associated with male perfume differentiation and species divergence in orchid bees. Curr Biol 18:1844–1848. doi:10.1016/j.cub.2008.10.049

    Article  CAS  PubMed  Google Scholar 

  • Eltz T, Fritzsch F, Pech JR, Zimmermann Y, RamÍRez SR, Quezada-Euan JJG, BembÉ B (2011) Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zool J Linn Soc 163:1064–1076. doi:10.1111/j.1096-3642.2011.00740.x

    Article  Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142. doi:10.1017/s1464793105006949

    Article  PubMed  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515. doi:10.1146/annurev.ecolsys.34.011802.132419

    Article  Google Scholar 

  • Farias IP, Santos WG, Gordo M, Hrbek T (2015) Effects of forest fragmentation on genetic diversity of the critically endangered primate, the pied yamarin (Saguinus bicolor): implications for conservation. J Hered 106:512–521. doi:10.1093/jhered/esv048

    Article  Google Scholar 

  • Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, Arias MC (2015) Genetic structure of island and mainland populations of a Neotropical bumble bee species. J Insect Conserv 20:383–394. doi:10.1007/s10841-016-9872-z

    Article  Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327. doi:10.1146/annurev.ge.29.120195.001513

    Article  CAS  PubMed  Google Scholar 

  • Frankham R (1997) Do island populations have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (2003) Genetics and conservation biology. CR Biol 326:22–29. doi:10.1016/S1631-0691(03)00023-4

    Article  Google Scholar 

  • Franzén M, Nilsson SG (2010) Both population size and patch quality affect local extinctions and colonizations. P R Soc Lond B 277:79–85

    Article  Google Scholar 

  • Galbusera P, Githiru M, Lens L, Matthysen E (2004) Genetic equilibrium despite habitat fragmentation in an Afrotropical bird. Mol Ecol 13:1409–1421. doi:10.1111/j.1365-294X.2004.02175.x

    Article  CAS  PubMed  Google Scholar 

  • Gempe T, Beye M (2011) Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays 33:52–60. doi:10.1002/bies.201000043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giangarelli D, Freiria G, Ferreira D, Aguiar WA, Penha RES et al (2015) Orchid bees: a new assessment on the rarity of diploid males in populations of this group of Neotropical pollinators. Apidologie 46:606–617

    Article  Google Scholar 

  • Gilpin ME, Soulé ME (1986) Minimum viable populations: process of species extinction. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer, Sunderland, pp 19–34

    Google Scholar 

  • Gómez-Pompa A, Kaus A (1999) From pre-Hispanic to future conservation alternatives: lessons from Mexico. Proc Natl Acad Sci USA 96:5982–5986

    Article  PubMed  PubMed Central  Google Scholar 

  • Gomez-Pompa A, Vazquez-Yanes C, Guevara S (1972) The tropical rain forest: a nonrenewable resource. Science 177:762–765

    Article  CAS  PubMed  Google Scholar 

  • Goulson D, Kaden JC, Lepais O, Lye GC, Darvill B (2011) Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conserv Genet 12:867–879. doi:10.1007/s10592-011-0190-4

    Article  Google Scholar 

  • Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347(6229):1255957. doi:10.1126/science.1255957

    Article  PubMed  CAS  Google Scholar 

  • Hanski I (2011) Habitat loss, the dynamics of biodiversity and a perspective on conservation. AMBIO 40:248–255. doi:10.1007/s13280-011-0147-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Harpur BA, Sobhani M, Zayed A (2013) A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entom Exp Appl 146:156–164. doi:10.1111/j.1570-7458.2012.01306.x

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230

    Article  CAS  PubMed  Google Scholar 

  • Hoban S, Arntzen JA, Bruford MW, Godoy JA, Rus Hoelzel A et al (2014) Comparative evaluation of potential indicators and temporal sampling protocols for monitoring genetic erosion. Evol Appl 7:984–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363

    Article  Google Scholar 

  • Husemann M, Cousseau L, Callens T, Matthysen E, Vangestel C, Hallmann C, Lens L (2015) Post-fragmentation population structure in a cooperative breeding Afrotropical cloud forest bird: emergence of a source-sink population network. Mol Ecol 24:1172–1187. doi:10.1111/mec.13105

    Article  CAS  PubMed  Google Scholar 

  • Jackson ND, Fahrig L (2014) Landscape context affects genetic diversity at a much larger spatial extent than population abundance. Ecology 95:871–881. doi:10.1890/13-0388.1

    Article  PubMed  Google Scholar 

  • Jaffé R, Castilla A, Pope N, Imperatriz-Fonseca VL, Metzger JP, Arias MC, Jha S (2015) Landscape genetics of a tropical rescue pollinator. Conserv Genet 17:267–278. doi:10.1007/s10592-015-0779-0

    Article  Google Scholar 

  • Janzen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171:203–205. doi:10.1126/science.171.3967.203

    Article  CAS  PubMed  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Keller D, van Strien MJ, Herrmann M, Bolliger J, Edwards PJ, Ghazoul J, Holderegger R (2013) Is functional connectivity in common grasshopper species affected by fragmentation in an agricultural landscape? Agr Ecosyst Environ 175:39–46. doi:10.1016/j.agee.2013.05.006

    Article  Google Scholar 

  • Koh I, Lonsdorf EV, Williams NM, Brittain C, Isaacs R, Gibbs J, Ricketts TH (2016) Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc Natl Acad Sci USA 113:140–145. doi:10.1073/pnas.1517685113

    Article  CAS  PubMed  Google Scholar 

  • Landaverde-González P, Enríquez E, Ariza MA, Murray T, Paxton RJ, Husemann M (2016) Habitat fragmentation and the population genetics of the native bee species Partamona bilineata (Hymenoptera: Apidae: Meliponini) in the cloud forest of Guatemala. In review, this special issue

  • Landguth EL, Cushman SA, Schwartz MK, McKelvey KS, Murphy M, Luikart G (2010) Quantifying the lag time to detect barriers in landscape genetics. Mol Ecol 19:4179–4191. doi:10.1111/j.1365-294X.2010.04808.x

    Article  CAS  PubMed  Google Scholar 

  • Laurance WF, Sayer J, Cassman KG (2014) Agricultural expansion and its impacts on tropical nature. Trends Ecol Evol 29:107–116. doi:10.1016/j.tree.2013.12.001

    Article  PubMed  Google Scholar 

  • Lechner S, Ferretti L, Schöning C, Kinuthia W, Willemsen D, Hasselmann M (2014) Nucleotide variability at its limit? Insights into the number and evolutionary dynamics of the sex-determining specificities of the honey bee Apis mellifera. Mol Biol Evol 31:272–287. doi:10.1093/molbev/mst207

    Article  CAS  PubMed  Google Scholar 

  • Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349:827–832

    Article  CAS  PubMed  Google Scholar 

  • López-Uribe MM, Almanza MT, Ordoñez M (2007) Diploid male frequencies in Colombian populations of euglossine bees. Biotropica 39:660–662. doi:10.1111/j.1744-7429.2007.00287.x

    Article  Google Scholar 

  • Lozier JD (2014) Revisiting comparisons of genetic diversity in stable and declining species: assessing genome-wide polymorphism in North American bumble bees using RAD sequencing. Mol Ecol 23:788–801. doi:10.1111/mec.12636

    Article  CAS  PubMed  Google Scholar 

  • Lozier JD, Strange JP, Stewart IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 20:4870–4888. doi:10.1111/j.1365-294X.2011.05314.x

    Article  PubMed  Google Scholar 

  • Maebe K, Meeus I, Ganne M, De Meulemeester T, Biesmeijer K, Smagghe G (2015) Microsatellite analysis of museum specimens reveals historical differences in genetic diversity between declining and more stable Bombus species. PLoS ONE 10:e0127870. doi:10.1371/journal.pone.0127870

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínez-Cruz B, Godoy JA, Negro JJ (2007) Population fragmentation leads to spatial and temporal genetic structure in the endangered Spanish imperial eagle. Mol Ecol 16:477–486. doi:10.1111/j.1365-294X.2007.03147.x

    Article  PubMed  Google Scholar 

  • Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25:1982–1983. doi:10.1093/bioinformatics/btp303

    Article  CAS  PubMed  Google Scholar 

  • May-Itzá W, Medina Medina LA, Medina S, Paxton RJ, Quezada-Euán JJG (2014) Seasonal nest characteristics of a facultatively social orchid bee, Euglossa viridissima, in the Yucatan Peninsula, Mexico. Insectes Soc 61:183–190. doi:10.1007/s00040-014-0342-x

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: FST and related measures. Mol Ecol Resour 11:5–18. doi:10.1111/j.1755-0998.2010.02927.x

    Article  PubMed  Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142. doi:10.1111/j.2041-210x.2012.00261.x

    Article  Google Scholar 

  • Napolitano C, Díaz D, Sanderson J, Johnson WE, Ritland K, Ritland CE, Poulin E (2015) Reduced genetic diversity and increased dispersal in guigna (Leopardus guigna) in Chilean fragmented landscapes. J Hered 106:522–536. doi:10.1093/jhered/esv025

    Article  Google Scholar 

  • Nei M (1977) F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41:225–233. doi:10.1111/j.1469-1809.1977.tb01918.x

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nemésio A, Santos LM, Vasconcelos HL (2015) Long-term ecology of orchid bees in an urban forest remnant. Apidologie 46:359–368. doi:10.1007/s13592-014-0328-8

    Article  Google Scholar 

  • Oomen RA, Reudink MW, Nocera JJ, Somers CM, Green MC, Kyle CJ (2011) Mitochondrial evidence for panmixia despite perceived barriers to gene flow in a widely distributed waterbird. J Hered 102:584–592. doi:10.1093/jhered/esr055

    Article  CAS  PubMed  Google Scholar 

  • Ortego J, Aguirre M, Cordero PJ (2010) Population genetics of Mioscirtus wagneri, a grasshopper showing a highly fragmented distribution. Mol Ecol 19:472–483. doi:10.1111/j.1365-294X.2009.04512.x

    Article  CAS  PubMed  Google Scholar 

  • Paxton RJ, Thorén PA, Gyllenstrand N, Tengö J (2000) Microsatellite DNA analysis reveals low diploid male production in a communal bee with inbreeding. Biol J Linn Soc 69:483–502. doi:10.1111/j.1095-8312.2000.tb01220.x

    Article  Google Scholar 

  • Paxton RJ, Zobel M, Steiner J, Zillikens A (2009) Microsatellite loci for Euglossa annectans (Hymenoptera: Apidae) and their variability in other orchid bees. Mol Ecol Resour 9:1221–1223

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pellet J, Fleishman E, Dobkin DS, Gander A, Murphy DD (2007) An empirical evaluation of the area and isolation paradigm of metapopulation dynamics. Biol Conserv 136:483–495. doi:10.1016/j.biocon.2006.12.020

    Article  Google Scholar 

  • Phillipsen IC, Lytle DA (2013) Aquatic insects in a sea of desert: population genetic structure is shaped by limited dispersal in a naturally fragmented landscape. Ecography 36:731–743. doi:10.1111/j.1600-0587.2012.00002.x

    Article  Google Scholar 

  • Pokorny T, Loose D, Dyker G, Quezada-Euán JJ, Eltz T (2015) Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidologie 46:224–237. doi:10.1007/s13592-014-0317-y

    Article  Google Scholar 

  • Rosa JF, Ramalho M, Arias MC (2016) Functional connectivity and genetic diversity of Eulaema atleticana (Apidae, Euglossina) in the Brazilian Atlantic Forest Corridor: assessment of gene flow. Biotropica 48:509–517. doi:10.1111/btp.12321

    Article  Google Scholar 

  • Ross KG, Vargo EL, Keller L, Trager JC (1993) Effect of a founder event on variation in the genetic sex-determining system of the fire ant Solenopsis invicta. Genetics 135:843–854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roubik DW, Hanson PE (2004) Orchid bees of tropical America. Instituto Nacional de Biodiversidad, Costa Rica

    Google Scholar 

  • Roubik DW, Weight LA, Bonilla MA (1996) Population genetics, diploid males and limits to social evolution of euglossine bees. Evolution 50:931–935. doi:10.2307/2410866

    Article  Google Scholar 

  • Rueda X (2010) Understanding deforestation in the southern Yucatán: insights from a sub-regional, multi-temporal analysis. Reg Environ Change 10:175–189. doi:10.1007/s10113-010-0115-7

    Article  Google Scholar 

  • Ruf D, Dorn S, Mazzi D (2013) Unexpectedly low frequencies of diploid males in an inbreeding parasitoid with complementary sex determination. Biol J Linn Soc 108:79–86. doi:10.1111/j.1095-8312.2012.01976.x

    Article  Google Scholar 

  • Scheper J et al (2014) Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. PNAS 111:17552–17557. doi:10.1073/pnas.1412973111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmieder S, Colinet D, Poirié M (2012) Tracing back the nascence of a new sex-determination pathway to the ancestor of bees and ants. Nat Commun 3:895

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silveira G, Freitas R, Tosta TA, Rabelo L, Gaglianone M, Augusto S (2015) The orchid bee fauna in the Brazilian savanna: do forest formations contribute to higher species diversity?. Apidologie 46:197–208

    Article  CAS  Google Scholar 

  • Soro A, Field J, Bridge C, Cardinal SC, Paxton RJ (2010) Genetic differentiation across the social transition in a socially polymorphic sweat bee, Halictus rubicundus. Mol Ecol 19:3351–3363

    Article  CAS  PubMed  Google Scholar 

  • Souza RO, Cervini M, Del Lama A, Paxton RJ (2007) Microsatellite loci for euglossine bees (Hymenoptera: Apidae). Mol Ecol Resour 7:1352–1356

    Article  CAS  Google Scholar 

  • Souza RO et al (2010) Conservation genetics of neotropical pollinators revisited: microsatellite analysis suggests that diploid males are rare in orchid bees. Evolution 64:3318–3326. doi:10.1111/j.1558-5646.2010.01052.x

    Article  PubMed  Google Scholar 

  • Suni SS (2016) Population genetics of Euglossa imperialis reveals low genetic diversity and restricted dispersal over a fragmented area. In review, this special issue

  • Szabo BJ, Ward WC, Weidie AE, Brady MJ et al (1978) Age and magnitude of the late Pleistocene sea-level rise on the eastern Yucatan Peninsula. Geology 6:713–715

    Article  CAS  Google Scholar 

  • Takahashi NC, Peruquetti RC, Del Lama MA, Campos LAdO (2001) A reanalysis of diploid male frequencies in euglossine bees (Hymenoptera: Apidae). Evolution 55:1897–1899. doi:10.1111/j.0014-3820.2001.tb00839.x

    Article  CAS  PubMed  Google Scholar 

  • Turner BL II, Villar SC, Foster D, Geoghegan J, Keys E et al (2001) Deforestation in the southern Yucatán peninsular region: an integrative approach. Forest Ecol Manag 154:353–370

    Article  Google Scholar 

  • Tzika AC et al (2008) Population genetics of Galápagos land iguana (genus Conolophus) remnant populations. Mol Ecol 17:4943–4952. doi:10.1111/j.1365-294X.2008.03967.x

    Article  PubMed  Google Scholar 

  • van de Zande L, Verhulst EC (2014) Genomic imprinting and maternal effect genes in haplodiploid sex determination. Sex Dev 8:74–82

    Article  PubMed  Google Scholar 

  • van Wilgenburg E, Driessen G, Beukeboom L (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front Zool 3:1–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanbergen AJ, Initiative IP (2013) Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ. doi:10.1890/120126

    Google Scholar 

  • Verhulst EC, Beukeboom LW, van de Zande L (2010) Maternal control of haplodiploid sex determination in the wasp Nasonia. Science 328:620–623

    Article  CAS  PubMed  Google Scholar 

  • Villanueva-Gutierrez R, Quesada-Euan J, Elzt T (2013) Pollen diets of two sibling orchid bee species, Euglossa, in Yucatán, southern Mexico. Apidologie 44:440–446

    Article  CAS  Google Scholar 

  • Wang IJ (2013) Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67:3403–3411

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yokoyama S, Nei M (1979) Population dynamics of sex-determining alleles in honey bees and self-incompatibility alleles in plants. Genetics 91:609–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zayed A (2004) Effective population size in Hymenoptera with complimentary sex determination. Heredity 93:627–630

    Article  CAS  PubMed  Google Scholar 

  • Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262

    Article  Google Scholar 

  • Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci USA 102:10742–10746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zayed A, Roubik DW, Packer L (2004) Use of diploid male frequency data as an indicator of pollinator decline. P R Soc Lond B 271:S9–S12. doi:10.1098/rsbl.2003.0109

    Article  Google Scholar 

  • Zimmermann Y, Schorkopf DLP, Moritz RFA, Pemberton RW, Quezada-Euan JJG, Eltz T (2011) Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv Genet 12:1183–1194. doi:10.1007/s10592-011-0221-1

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editors and referees for comments that helped improve the manuscript, Ramirez Pech, Rubén Medina and Tony Gonzalez for collecting the male individuals used in this study and Petra Leibe and Rita Radzeviciute for their assistance in the laboratory. We thank CONACyT-EU Project FONCICyT 94293 (Mutualismos y abejas en paisajes tropicales) for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonella Soro.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 159 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soro, A., Quezada-Euan, J.J.G., Theodorou, P. et al. The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity. Conserv Genet 18, 607–619 (2017). https://doi.org/10.1007/s10592-016-0912-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0912-8

Keywords

Navigation