Skip to main content

Advertisement

Log in

Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

There is concern about the worldwide decline of bees, in which genetic factors may play a role. As populations of these haplodiploid insects suffer habitat fragmentation and subsequent isolation, theory predicts an increase in inbreeding and a concomitant increase in inviable or sterile diploid males, a product of reduced allelic diversity at the sex determining locus, which could lead to a diploid male extinction vortex. To test this idea, we genotyped 1,245 males of one orchid bee, Euglossa cordata, a species with low diploid male production on the mainland. We genotyped bees from the Brazilian mainland and three islands using five highly variable microsatellite loci. Allelic richness was lowest on the most remote island 38 km from the mainland and, though the degree of differentiation across localities was modest (global FST = 0.034; global \({\text{G}}_{\text{ST}}^{'} = 0. 1 5 3\), both P < 0.001) and isolation by distance was weak (Mantel test, r = 0.614, P = 0.056), sea was revealed to be a significant barrier to inferred historic gene flow (partial Mantel test of distance over sea, r = 0.831, P = 0.003). Only seven males were diploid (mean diploid male production, DMP, 0.6 %). Though the proportion of diploid males was highest on the most remote island (1.3 %), differences in DMP across study areas were statistically non-significant. Thus island isolation leads to reduced genetic variation at putatively neutral microsatellite loci, but E. cordata nevertheless seems to maintain allelic diversity at the sex locus, possibly because of sufficient gene flow, or because it is a locus under balancing selection, or because of the joint action of these two evolutionary forces: migration and selection. These and other bee species may be able to maintain sufficient variability at the sex locus to avoid entering the DM extinction vortex, even on relatively isolated islands or habitat fragments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Malden

    Google Scholar 

  • Ângelo S (1989) Ilhas do Litoral Paulista, Série documentos. Secretaria do Meio Ambiente (SMA), São Paulo

    Google Scholar 

  • Ayasse M, Paxton RJ, Tengö J (2001) Mating behavior and chemical communication in the Order Hymenoptera. Annu Rev Entomol 46:31–78

    Article  PubMed  CAS  Google Scholar 

  • Beye M, Hasselmann M, Fondrk MK, Page RE, Omholt SW (2003) The gene csd is the primary signal for sexual development in the honeybee and encodes an SR-type protein. Cell 114:419–429

    Article  PubMed  CAS  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetics studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Brook BW, Tonkyn DW, O`Grady JJ, Frankham R (2002) Contribution of inbreeding to extinction risk in threatened species. Conserv Ecol 6:16. http://www.consecol.org/vol6/iss1/art16. Accessed 27 Jan 2013

    Google Scholar 

  • Brown MJF, Paxton RJ (2009) The conservation of bees: a global perspective. Apidologie 40:410–416

    Article  Google Scholar 

  • Cardinale BJ, Duffy E, Gonzalez A, Hooper DU, Perrings C, Venail P, Narwani A, Mace GM, Tilman D, Wardle DA, Kinzig AP, Daily GC, Loreau M, Grace JB, Lagauderie A, Srivastava DS, Naeem S (2012) Biodiversity loss and its impact on humanity. Nature 486:59–67

    Article  PubMed  CAS  Google Scholar 

  • Cerântola NCM, Oi CA, Cervini M, Del Lama MA (2010) Genetic differentiation of urban populations of Euglossa cordata from the state of São Paulo, Brazil. Apidologie 42:214–222

    Article  Google Scholar 

  • Cook JM (1993) Sex determination in the Hymenoptera: a review of models and evidence. Heredity 71:421–435

    Article  Google Scholar 

  • Cook JM, Crozier RH (1995) Sex determination and population biology in the Hymenoptera. Trends Ecol Evol 10:281–286

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro GD, Boff S, Caetano TA, Fernandes PC, Alves-dos-Santos I (2013) Euglossine bees (Apidae) in Atlantic forest areas of São Paulo State, southeastern Brazil. Apidologie 44:254–267

    Article  Google Scholar 

  • Cowan DP, Stahlhut JK (2004) Functionally reproductive diploid and haploid males in an inbreeding hymenopteran with complementary sex determination. PNAS 101:10374–10379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crozier RH, Pamilo P (1996) Sex allocation and kin selection. Evolution of social insect colonies. Oxford University Press, Oxford

    Google Scholar 

  • Darvill B, Ellis JS, Lye GC, Goulson D (2006) Population structure and inbreeding in a rare and declining bumblebee, Bombus muscorum (Hymenoptera: Apidae). Mol Ecol 15:601–611

    Article  PubMed  CAS  Google Scholar 

  • Darvill B, O’Connor S, Lye GC, Waters J, Lepais O, Goulson D (2010) Cryptic differences in dispersal lead to differential sensitivity to habitat fragmentation in two bumblebee species. Mol Ecol 19:53–63

    Article  PubMed  CAS  Google Scholar 

  • Davis ES, Murray TE, Fitzpatrick Ú, Brown MJF, Paxton RJ (2010) Landscape effects on extremely fragmented populations of a rare solitary bee, Colletes floralis. Mol Ecol 19:4922–4935

    Article  PubMed  Google Scholar 

  • de Boer JG, Ode PJ, Rendahl AK, Vet LEM, Whitfield JB, Heimpel GE (2008) Experimental support for multiple-locus complementary sex determination in the parasitoid Cotesia vestalis. Genetics 180:1525–1535

    Google Scholar 

  • Dennis RLH, Dapporto L, Shreeve TG, John E, Coutsis JG, Kudrna O, Saarinen K, Ryrholm N, (Bob) Williams WR (2008) Butterflies of European islands: the implications of the geography and ecology of rarity and endemicity for conservation. J Insect Conserv 12:205–236

    Article  Google Scholar 

  • Dieringer D, Schlötterer C (2003) Microsatellite Analyser (MSA 4.05): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169

    Article  CAS  Google Scholar 

  • Dobson A, Lodge D, Alder J, Cumming GS, Keymer J, McGlade J, Mooney H, Risak JA, Sala O, Wolters V, Wall D, Winfree R, Xenopoulos MA (2006) Habitat loss, trophic collapse, and the decline of ecosystem service. Ecology 87:1915–1924

    Article  PubMed  Google Scholar 

  • Dressler RL (1982) Biology of the orchid bees (Euglossini). Annu Rev Ecol Syst 13:373–394

    Article  Google Scholar 

  • Elias J, Dorn S, Mazzi D (2010) No evidence for increased extinction proneness with decreasing effective population size in a parasitoid with complementary sex determination and fertile diploid males. BMC Evol Biol 10:366

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Frankham R (1995) Conservation genetics. Annu Rev Genet 29:305–327

    Article  PubMed  CAS  Google Scholar 

  • Frankham R (1997) Do island population have less genetic variation than mainland populations? Heredity 78:311–327

    Article  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Frankham R (2003) Genetics and conservation biology. C R Biologies 326:S22–S29

    Article  PubMed  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2004) A primer of conservation genetics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Robert CL, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Freiria GA, Bombarda Ruim J, Souza RF, Sofia SH (2012) Population structure and genetic diversity of the orchid bee Eufriesea violacea (Hymenoptera, Apidae, Euglossini) from Atlantic Forest remnants in southern and southeastern Brazil. Apidologie 43:392–402

    Article  Google Scholar 

  • Gallai N, Salles J-M, Settele J, Vaissière BE (2009) Economic valuation of the vulnerability of world agriculture confronted to pollinator decline. Ecol Econ 68:810–821

    Article  Google Scholar 

  • Garófalo CA (1985) Social structure of Euglossa cordata nests (Hymenoptera: Apidae: Euglossini). Entomol Gen 11:77–83

    Article  Google Scholar 

  • Gerlach J (2008) Preliminary conservation status and needs of an oceanic island fauna: the case of Seychelles insects. J Insect Conserv 12:293–305

    Article  Google Scholar 

  • Goulson D, Kaden JC, Lepais O, Lye GC, Darvill B (2011) Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conserv Genet 12:867–879

    Article  Google Scholar 

  • Harpur BA, Sobhani M, Zayed A (2013) A review of the consequences of complementary sex determination and diploid male production on mating failures in the Hymenoptera. Entomol Exp Appl 146:156–164

    Article  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Google Scholar 

  • Heimpel GE, de Boer JG (2008) Sex determination in the Hymenoptera. Annu Rev Entomol 53:209–230

    Article  PubMed  CAS  Google Scholar 

  • Hein S, Poethke HJ, Dorn S (2009) What stops the ‘diploid male vortex’? A simulation study for species with single locus complementary sex determination. Ecol Model 220:1663–1669

    Article  Google Scholar 

  • IBM Corporation (2010) IBM SPSS Statistics for Windows, Version 19.0., Released 2010. IBM Corporation, Armonk

  • Jansen DH (1971) Euglossine bees as long-distance pollinators of tropical plants. Science 171:203–205

    Article  Google Scholar 

  • Jansen DH (1981) Reduction in Euglossine bee species richness on Isla del Cano, a Costa Rican offshore island. Biotropica 13:238–240

    Article  Google Scholar 

  • Jordan MA, Snell HL (2008) Historical fragmentation of islands and genetic drift in populations of Galápagos lava lizards (Microlophus albemarlensis complex). Mol Ecol 17:1224–1237

    Article  PubMed  CAS  Google Scholar 

  • Kearns CA, Inouye DW, Waser NM (1998) Endangered mutualisms: the conservation of plant-pollinator interactions. Annu Rev Ecol Evol Syst 29:83–112

    Article  Google Scholar 

  • Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (2007) Importance of pollinators in changing landscapes for world crops. Proc R Soc B 274:303–313

    Article  PubMed  PubMed Central  Google Scholar 

  • López-Uribe MM, Almanza MT, Ordóñez M (2007) Diploid male frequencies in Colombian population of Euglossini bees. Biotropica 39:660–662

    Article  Google Scholar 

  • MacArthur RH, Wilson EO (1967) The theory of island biogeography. Princeton University Press, Princeton

    Google Scholar 

  • McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB (1990) Conserving the World’s biological diversity. IUCN, World Resources Institute, Conservation International, WWF-US and the World Bank, Washington

    Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • New TR (2008) Insect conservation on islands: setting the scene and defining the needs. J Insect Conserv 12:197–204

    Article  Google Scholar 

  • O’Grady JJ, Reed DH, Brook BW, Frankham R (2008) Extinction risk scales better to generations than years. Anim Conserv 11:442–451

    Article  Google Scholar 

  • Paxton RJ (2005) Male mating behavior and mating systems of bees: an overview. Apidologie 36:145–156

    Article  Google Scholar 

  • Paxton RJ, Thorén PA, Gyllenstrand N (2000) Microsatellite DNA analysis reveals low diploid male production in a communal bee with inbreeding. Biol J Linnean Soc 69:483–502

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Petit RJ, Deguilloux M-F, Chat J, Grivet D, Garnier-Géré P, Vendramin GG (2005) Standardizing for microsatellite length in comparisons of genetic diversity. Mol Ecol 14:885–890

    Article  PubMed  CAS  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (V. 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rocha Filho LC, Cerântola NCM, Garófalo CA, Del Lama MA (2013) Genetic differentiation of the Euglossini (Hymenoptera, Apidae) population on a mainland coastal plain and an insular in Southeastern Brazil. Genetica 141:65–74

    Article  PubMed  Google Scholar 

  • Roubik DW, Hanson PE (2004) Orchid bees of tropical America: biology and field guide. Heredia, Costa Rica

    Google Scholar 

  • Roubik DW, Weight LA, Bonilla MA (1996) Population genetics, diploid males, and limits to social evolution of Euglossine bees. Evolution 50:931–935

    Article  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  PubMed Central  Google Scholar 

  • Schlötterer C (1998) Microsatellites. In: Hoelzel AR (ed) Molecular genetic analysis of populations. A practical approach. Oxford University Press, Oxford, pp 237–261

    Google Scholar 

  • Schlötterer C (2004) The evolution of molecular markers—just a matter of fashion? Nat Rev Genet 5:63–69

    Article  PubMed  Google Scholar 

  • Soro A, Field J, Bridge C, Cardinal SC, Paxton RJ (2010) Genetic differentiation across the social transition in a socially polymorphic sweat bee, Halictus rubicundus. Mol Ecol 19:3351–3363

    Article  PubMed  CAS  Google Scholar 

  • Souza RO, Cervini MA, Del Lama MA, Paxton RJ (2007) Microsatellite loci for euglossine bees (Hymenoptera: Apidae). Mol Ecol Notes 7:1352–1356

    Article  CAS  Google Scholar 

  • Souza RO, Del Lama MA, Cervini M, Mortari N, Eltz T, Zimmermann Y, Bach C, Brosi BJ, Suni S, Quezada-Euán JJG, Paxton RJ (2010) Conservation genetics of neotropical pollinators revisited: microsatellite analysis suggests that diploid males are rare in orchid bees. Evolution 64:3318–3326

    Article  PubMed  Google Scholar 

  • Spear SF, Balkenhol N, Fortin M-J, McRae BH, Scribner KIM (2010) Use of resistance surfaces for landscape genetic studies: considerations for parameterization and analysis. Mol Ecol 19:3576–3591

    Article  PubMed  Google Scholar 

  • Spielman D, Brook BW, Frankham R (2004) Most species are not driven to extinction before genetic factors impact them. PNAS 101:15261–15264

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stouthamer R, Luck RF, Werren JH (1992) Genetics of sex determination and improvement of biological control using parasitoids. Environ Entomol 21:427–435

    Google Scholar 

  • Suguio K, Martin L (1987) Classificação da costa e evolução geológica das planícies litorâneas do sudeste e sul do Brasil. In: Anáis do Simpósio sobre ecossistemas da Costa Sul e Sudeste Brasileira: síntese dos conhecimentos, pp 1–2

  • Suni SS, Brosi BJ (2011) Population genetics of orchid bees in a fragmented tropical landscape. Conserv Genet. doi:10.1007/s10592-011-0284-z

    Google Scholar 

  • Takahashi J, Ayabe T, Mitsuhata M, Shimizu I, Ono M (2008) Diploid male production in a rare locally distributed bumblebee, Bombus florigelus (Hymenoptera, Apidae). Insect Soc 55:43–50

    Article  Google Scholar 

  • Tavares MG, Carvalho CR, Soares FAF (2010) Genome size variation in Melipona species (Hymenoptera: Apidae) and sub-grouping by their DNA content. Apidologie 41:636–642

    Article  CAS  Google Scholar 

  • Van Wilgenburg E, Driesses G, Beukboom LW (2006) Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front Zool. doi:10.1186/1742-9994-3-1

    PubMed  PubMed Central  Google Scholar 

  • Verhulst EC, Beukeboom LW, van de Zande L (2010) Maternal control of haplodiploid sex determination in the wasp Nasonia. Science 328:620–623

    Article  PubMed  CAS  Google Scholar 

  • Walsh PS, Metzeger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10:506–513

    PubMed  CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Whidden TL, Owen RE (2011) Frequencies of diploid male in natural population of three North American bumble bee (Bombus) species (Hymenoptera: Apidae). Genetics 104:83–87

    Google Scholar 

  • Whitehorn PR, Tinsley MC, Goulson D (2009) Kin recognition and inbreeding reluctance in bumblebees. Apidologie 40:627–633

    Article  Google Scholar 

  • Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. The theory of gene frequencies, vol 2. University of Chicago Press, Chicago

    Google Scholar 

  • Zayed A (2009) Bee genetics and conservation. Apidologie 40:237–262

    Article  Google Scholar 

  • Zayed A, Packer L (2001) High levels of diploid male production in a primitively eusocial bee (Hymenoptera: Halictidae). Heredity 87:631–636

    Article  PubMed  CAS  Google Scholar 

  • Zayed A, Packer L (2005) Complementary sex determination substantially increases extinction proneness of haplodiploid population. PNAS 102:10742–10746

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zayed A, Roubik DW, Packer L (2004) Use of diploid male frequency data as an indicator of pollinator decline. Proc R Soc Lond B 271:9–12

    Article  Google Scholar 

  • Zimmermann Y, Roubik DW, Quezada-Euan JJG, Paxton RJ, Eltz T (2009) Single mating in orchid bees (Euglossa, Apinae): implications for mate choice and social evolution. Insect Soc 56:241–249

    Article  Google Scholar 

  • Zimmermann Y, Schorkopf DLP, Moritz RFA, Pemberton RW, Quezada-Euan JJG, Eltz T (2011) Population genetic structure of orchid bees (Euglossini) in anthropogenically altered landscapes. Conserv Genet 12:1183–1194

    Article  Google Scholar 

Download references

Acknowledgments

We thank Carlos Eduardo Pinto, Guaraci Duran Cordeiro, Morgana Sazan, Paulo César Fernandes and Tiago Caetano for their help in the field, André Nemésio and Leo Rocha Filho for species identification, Flávio Oliveira Francisco, Leandro Rodrigues Santiago, Paulo Gonçalves and Rita Radzeviciute for help in the lab, and Maria Cristina Arias, Tomás Murray and the referees for many very helpful comments that helped improve the manuscript. Petra Liebe kindly processed samples in a MegaBace in the Molecular Ecology Lab at the Martin Luther University Halle-Wittenberg, for which we thank her and Robin Moritz. The Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) supported our project. The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and the Deutscher Akademischer Austausch Dienst (DAAD) funded the first author. SISBIO (Sistema de Informação e Autorização em Biodiversidade) provided a collecting permit (Nr.10453-1) and IBAMA (Insituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) provided a biological sample export permit (Nr.10BR005548/DF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Boff.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boff, S., Soro, A., Paxton, R.J. et al. Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee. Conserv Genet 15, 1123–1135 (2014). https://doi.org/10.1007/s10592-014-0605-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0605-0

Keywords

Navigation