Skip to main content
Log in

On the determination of the potential function from given orbits

  • Published:
Czechoslovak Mathematical Journal Aims and scope Submit manuscript

Abstract

The paper deals with the problem of finding the field of force that generates a given (N − 1)-parametric family of orbits for a mechanical system with N degrees of freedom. This problem is usually referred to as the inverse problem of dynamics. We study this problem in relation to the problems of celestial mechanics. We state and solve a generalization of the Dainelli and Joukovski problem and propose a new approach to solve the inverse Suslov’s problem. We apply the obtained results to generalize the theorem enunciated by Joukovski in 1890, solve the inverse Stäckel problem and solve the problem of constructing the potential-energy function U that is capable of generating a bi-parametric family of orbits for a particle in space. We determine the equations for the sought-for function U and show that on the basis of these equations we can define a system of two linear partial differential equations with respect to U which contains as a particular case the Szebehely equation. We solve completely a special case of the inverse dynamics problem of constructing U that generates a given family of conics known as Bertrand’s problem. At the end we establish the relation between Bertrand’s problem and the solutions to the Heun differential equation. We illustrate our results by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold: Dynamical Systems 3. Viniti, Moscow, 1985. (In Russian.)

    Google Scholar 

  2. M. I. Bertrand: Sur la posibilité de déduire d’une seule de lois de Kepler le principe de l’attraction. Comtes rendues 9 (1877).

  3. G. Bozis: The inverse problem of dynamics: basic facts. Inverse Probl. 11 (1995), 687–708; Mech. 38 (1986), 357.

    Article  MATH  MathSciNet  Google Scholar 

  4. C. L. Charlier: Celestial Mechanics (Die Mechanik Des Himmels). Nauka, Moscow, 1966. (In Russian.)

    Google Scholar 

  5. U. Dainelli: Sul movimento per una linea qualunque. Giorn. Mat. 18 (1880). (In Italian.)

  6. G. H. Duboshin: Celestial Mechanics. Nauka, Moscow, 1968. (In Russian.)

    Google Scholar 

  7. V. P. Ermakov: Determination of the potential function from given partial integrals. Math. Sbornik, Ser. 4 15 (1881). (In Russian.)

  8. A. S. Galiullin: Inverse Problems of Dynamics. Mir Publishers, Moscow, 1984.

    Google Scholar 

  9. N. E. Joukovski: Construction of the potential function from a given family of trajectories. Gostexizdat. (In Russian.)

  10. J. Klein: Espaces variationnels et mécanique. Ann Inst. Fourier 12 (1962), 1–124.

    MATH  Google Scholar 

  11. A. Kratzer, W. Franz: Transzendente Funktionen. Geest & Portig K.-G., Leipzig, 1960.

    Google Scholar 

  12. V. V. Kozlov: Dynamical Systems X. General Theory of vortices. Encyclopedia of Math. Sciencies 67. Spinger, Berlin, 2003.

    MATH  Google Scholar 

  13. S. Lie: Zur allgemeinen Theorie der partiellen Differentialgleichungen beliebiger Ordung. Leipzig. Ber. Heft 1.-S, 1895, pp. 53–128.

  14. I. Newton: Philosophiæ Naturalis Principia Mathematica. London, 1687.

  15. F. Puel: Celestial Mechanics 32.

  16. R. Ramírez, N. Sadovskaia N.: Inverse problem in celestial mechanic. Atti. Sem. Mat. Fis. Univ. Modena LII (2004), 47–68.

    Google Scholar 

  17. A. Ronveaux (ed.): Heun’s differential equations. Oxford University Press, Oxford, 1995.

    MATH  Google Scholar 

  18. N. Sadovskaia: Inverse problem in theory of ordinary differential equations. PhD. Thesis. Univ. Politécnica de Cataluna, 2002. (In Spanish.)

  19. G. K. Suslov: Determination of the power function from given particular integrals. Kiev, 1890. (In Russian.)

  20. V. Szebehely: Open problems on the eve of the next millenium. Celest. Mech. Dyn. Astron. 65 (1997), 205–211.

    Article  MATH  MathSciNet  Google Scholar 

  21. V. Szebehely: On the determination of the potential E. Proverbio, Proc. Int. Mtg. Rotation of the Earth, Bologna, 1974.

  22. E. T. Whittaker: A Treatise on the Analytic Dynamics of Particles and Rigid Bodies. Cambridge University Press, Cambridge, 1959.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was partly supported by the Spanish Ministry of Education through projects DPI2007-66556-C03-03, TSI2007-65406-C03-01 “E-AEGIS” and Consolider CSD2007-00004 “ARES”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alboul, L., Mencía, J., Ramírez, R. et al. On the determination of the potential function from given orbits. Czech Math J 58, 799–821 (2008). https://doi.org/10.1007/s10587-008-0052-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10587-008-0052-5

Keywords

Navigation