Skip to main content
Log in

Managing performance and power consumption tradeoff for multiple heterogeneous servers in cloud computing

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

There are typically multiple heterogeneous servers providing various services in cloud computing. High power consumption of these servers increases the cost of running a data center. Thus, there is a problem of reducing the power cost with tolerable performance degradation. In this paper, we optimize the performance and power consumption tradeoff for multiple heterogeneous servers. We consider the following problems: (1) optimal job scheduling with fixed service rates; (2) joint optimal service speed scaling and job scheduling. For problem (1), we present the Karush-Kuhn-Tucker (KKT) conditions and provide a closed-form solution. For problem (2), both continuous speed scaling and discrete speed scaling are considered. In discrete speed scaling, the feasible service rates are discrete and bounded. We formulate the problem as an MINLP problem and propose a distributed algorithm by online value iteration, which has lower complexity than a centralized algorithm. Our approach provides an analytical way to manage the tradeoff between performance and power consumption. The simulation results show the gain of using speed scaling, and also prove the effectiveness and efficiency of the proposed algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Algorithm 1
Algorithm 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. AMD Cool’n’Quiet technology. http://www.amd.com/us/products/technologies/cool-n-quiet/Pages/cool-n-quiet.aspx (2012)

  2. Google unveils its container data center. http://www.datacenterknowledge.com/archives/2009/04/01/google-unveils-its-container-data-center/ (2012)

  3. Andrew, L., Lin, M., Wierman, A.: Optimality, fairness, and robustness in speed scaling designs. ACM SIGMETRICS Perform. Eval. Rev. 38(1), 37–48 (2010)

    Article  Google Scholar 

  4. Bansal, N., Pruhs, K., Stein, C.: Speed scaling for weighted flow time. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 805–813. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Google Scholar 

  5. Barroso, L.: The price of performance. Queue 3(7), 48–53 (2005)

    Article  Google Scholar 

  6. Barroso, L., Holzle, U.: The case for energy-proportional computing. Computer 40(12), 33–37 (2007)

    Article  Google Scholar 

  7. Cao, J., Hwang, K., Li, K., Zomaya, A.: Optimal Multiserver Configuration for Profit Maximization in Cloud Computing (2012)

    Google Scholar 

  8. Chandrakasan, A., Sheng, S., Brodersen, R.: Low-power cmos digital design. IEICE Trans. Electron. 75(4), 371–382 (1992)

    Google Scholar 

  9. Chen, G., He, W., Liu, J., Nath, S., Rigas, L., Xiao, L., Zhao, F.: Energy-aware server provisioning and load dispatching for connection-intensive Internet services. In: Proceedings of the 5th USENIX Symposium on Networked Systems Design and Implementation, pp. 337–350 (2008). USENIX Association

    Google Scholar 

  10. Chen, L., Li, N., Low, S.: On the interaction between load balancing and speed scaling. In: ITA Workshop (2011)

    Google Scholar 

  11. Feng, W.: The importance of being low power in high performance computing. CTWatch Q. 1(3), 11–20 (2005)

    Google Scholar 

  12. Floyd, M., Ghiasi, S., Keller, T., Rajamani, K., Rawson, F., Rubio, J., Ware, M.: System power management support in the IBM power6 microprocessor. IBM J. Res. Dev. 51(6), 733–746 (2007)

    Article  Google Scholar 

  13. Gandhi, A., Harchol-Balter, M., Das, R., Lefurgy, C.: Optimal power allocation in server farms. Perform. Eval. Rev. 37(1), 157 (2009)

    Google Scholar 

  14. George, J., Harrison, J.: Dynamic control of a queue with adjustable service rate. Oper. Res. 49(5), 720–731 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Graham, S., Snir, M., Patterson, C.: Getting up to Speed: The Future of Supercomputing. (2005), National Academy Press

    Google Scholar 

  16. Khan, S., Ahmad, I.: A cooperative game theoretical technique for joint optimization of energy consumption and response time in computational grids. Parallel and Distributed Systems. IEEE Trans. Parallel Distrib. Syst. 20(3), 346–360 (2009)

    Article  MathSciNet  Google Scholar 

  17. Krishna, C., Lee, Y.: Voltage-clock-scaling adaptive scheduling techniques for low power in hard real-time systems. In: Sixth IEEE Proceedings of Real-Time Technology and Applications Symposium, 2000. RTAS 2000, pp. 156–165. IEEE Press, New York (2000)

    Chapter  Google Scholar 

  18. Lam, T., Lee, L., To, I., Wong, P.: Speed scaling functions for flow time scheduling based on active job count. In: Algorithms-ESA 2008, pp. 647–659 (2008)

    Chapter  Google Scholar 

  19. Le Sueur, E., Heiser, G.: Dynamic voltage and frequency scaling: the laws of diminishing returns. In: Proceedings of the 2010 International Conference on Power Aware Computing and Systems, pp. 1–8. (2010). USENIX Association

    Google Scholar 

  20. Lee, Y., Krishna, C.: Voltage-clock scaling for low energy consumption in fixed-priority real-time systems. Real-Time Syst. 24(3), 303–317 (2003)

    Article  MATH  Google Scholar 

  21. Lee, Y., Zomaya, A.: Energy conscious scheduling for distributed computing systems under different operating conditions. IEEE Trans. Parallel Distrib. Syst. 22(8), 1374–1381 (2011)

    Article  Google Scholar 

  22. Leyffer, S.: Deterministic methods for mixed integer nonlinear programming. PhD University of Dundee (1993)

  23. Li, K.: Optimal Power Allocation among Multiple Heterogeneous Servers in a Data Center. Sustainable Computing: Informatics and Systems (2011)

    Google Scholar 

  24. Li, K.: Optimal configuration of a multicore server processor for managing the power and performance tradeoff. J. Supercomput. 61(1), 189–214 (2012)

    Article  Google Scholar 

  25. Li, K.: Scheduling precedence constrained tasks with reduced processor energy on multiprocessor computers. IEEE Trans. Comput. 61, 1668–1681 (2012). Special issue on energy efficient computing

    Article  MathSciNet  Google Scholar 

  26. Linden, G.: Marissa Mayer at Web 2.0 2006. http://glinden.blogspot.com/2006/11/marissa-mayer-at-web-20.html (2012)

  27. Minas, L., Ellison, B.: Energy Efficiency for Information Technology: How to Reduce Power Consumption in Servers and Data Centers. (2009). Intel Press

    Google Scholar 

  28. Pallipadi, V.: Enhanced Intel Speedstep Technology and Demand-Based Switching on Linux. (2008). Intel Developer Service

    Google Scholar 

  29. Palomar, D., Chiang, M.: A tutorial on decomposition methods for network utility maximization. IEEE J. Sel. Areas Commun. 24(8), 1439–1451 (2006)

    Article  Google Scholar 

  30. Pinheiro, E., Bianchini, R., Carrera, E., Heath, T.: Load balancing and unbalancing for power and performance in cluster-based systems. In: Workshop on Compilers and Operating Systems for Low Power, vol. 180, pp. 182–195 (2001)

    Google Scholar 

  31. Tian, Y., Lin, C., Yao, M.: Modeling and analyzing power management policies in server farms using stochastic petri nets. In: Proceedings of the 3rd International Conference on Future Energy Systems: Where Energy. Computing and Communication Meet, p. 26. ACM, New York (2012)

    Google Scholar 

  32. Wierman, A., Andrew, L., Tang, A.: Power-aware speed scaling in processor sharing systems. In: IEEE INFOCOM 2009, pp. 2007–2015. IEEE Press, New York (2009)

    Google Scholar 

  33. Yao, F., Demers, A., Shenker, S.: A scheduling model for reduced cpu energy. In: Proceedings of 36th Annual Symposium on Foundations of Computer Science, 1995, pp. 374–382. IEEE Press, New York (1995)

    Google Scholar 

  34. Zheng, X., Cai, Y.: Achieving energy proportionality in server clusters. Int. J. Comput. Netw. Commun. 1(1), 21 (2009)

    MathSciNet  Google Scholar 

  35. Zheng, X., Cai, Y.: Optimal server allocation and frequency modulation on multi-core based server clusters. Int. J. Green Comput. 1(2), 18–30 (2010)

    Article  MathSciNet  Google Scholar 

  36. Zheng, X., Cai, Y.: Optimal server provisioning and frequency adjustment in server clusters. In: 39th International Conference on Parallel Processing Workshops 2010 (ICPPW), pp. 504–511. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  37. Zhong, X., Xu, C.: Energy-aware modeling and scheduling for dynamic voltage scaling with statistical real-time guarantee. IEEE Trans. Comput. 56(3), 358–372 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Tian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tian, Y., Lin, C. & Li, K. Managing performance and power consumption tradeoff for multiple heterogeneous servers in cloud computing. Cluster Comput 17, 943–955 (2014). https://doi.org/10.1007/s10586-013-0326-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-013-0326-z

Keywords

Navigation