Skip to main content

Advertisement

Log in

Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Angiogenesis is a highly regulated physiological process that has been studied in considerable detail given its importance in several chronic pathologies. Many endogenous factors and hormones intervene in the regulation of angiogensis and classical as well as targeted drugs have been developed for its control. Angiogenesis inhibition has come off the bench and entered into clinical application for cancer therapy, particularly for metastatic disease. While the clinical benefit is currently in terms of months, preclinical data suggest that novel drugs and drug combinations could lead to substantial improvement. The many targets of endogenous angiogenesis inhibitors reflect the complexity of the process; in contrast, current clinical therapies mainly target the vascular endothelial growth factor system. Cancer chemopreventive compounds can retard tumor insurgence and delay or prevent metastasis and many of these molecules hinder angiogenesis, a mechanism that we termed angioprevention. Angiopreventive drugs appear to prevalently act through the inhibition of the pro-inflammatory and anti-apoptotic player NFκB, thus contrasting inflammation dependent angiogenesis. Relatively little is known concerning the effects of these angiogenesis inhibitors on gene expression of endothelial cells, the main target of many of these molecules. Here we provide an exhaustive list of anti-angiogenic molecules, and summarize their effects, where known, on the transcriptome and functional genomics of endothelial cells. The regulation of specific genes can be crucial to preventive or therapeutic intervention. Further, novel targets might help to circumvent resistance to anti-angiogenic therapy. The studies we review are relevant not only to cancer but also to other chronic degenerative diseases involving endothelial cells, such as cardiovascular disorders, diabetes, rheumatoid arthritis and retinopaties, as well as vessel aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Albini A, Sporn MB (2007) The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7(2):139–147

    Article  PubMed  CAS  Google Scholar 

  2. Casanovas O, Hicklin DJ, Bergers G et al (2005) Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell 8(4):299–309

    Article  PubMed  CAS  Google Scholar 

  3. Mizukami Y, Jo WS, Duerr EM et al (2005) Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat Med 11(9):992–997

    PubMed  CAS  Google Scholar 

  4. Rusnati M, Presta M (2007) Fibroblast growth factors/fibroblast growth factor receptors as targets for the development of anti-angiogenesis strategies. Curr Pharm Des 13(20):2025–2044

    Article  PubMed  CAS  Google Scholar 

  5. Viloria-Petit A, Crombet T, Jothy S et al (2001) Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis. Cancer Res 61(13):5090–5101

    PubMed  CAS  Google Scholar 

  6. Albini A, Tosetti F, Benelli R et al (2005) Tumor inflammatory angiogenesis and its chemoprevention. Cancer Res 65(23):10637–10641

    Article  PubMed  CAS  Google Scholar 

  7. Shojaei F, Wu X, Malik AK et al (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b+ Gr1 + myeloid cells. Nat Biotechnol 25(8):911–920

    Article  PubMed  CAS  Google Scholar 

  8. Shojaei F, Wu X, Zhong C et al (2007) Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 450(7171):825–831

    Article  PubMed  CAS  Google Scholar 

  9. Aplin AC, Gelati M, Fogel E et al (2006) Angiopoietin-1 and vascular endothelial growth factor induce expression of inflammatory cytokines before angiogenesis. Physiol Genomics 27(1):20–28

    Article  PubMed  CAS  Google Scholar 

  10. Sporn MB, Suh N (2002) Chemoprevention: an essential approach to controlling cancer. Nat Rev Cancer 2(7):537–543

    Article  PubMed  CAS  Google Scholar 

  11. Tosetti F, Ferrari N, De Flora S et al (2002) Angioprevention’: angiogenesis is a common and key target for cancer chemopreventive agents. FASEB J 16(1):2–14

    Article  PubMed  CAS  Google Scholar 

  12. Sudhakar A, Nyberg P, Keshamouni VG et al (2005) Human alpha1 type IV collagen NC1 domain exhibits distinct antiangiogenic activity mediated by alpha1beta1 integrin. J Clin Invest 115(10):2801–2810

    Article  PubMed  CAS  Google Scholar 

  13. Kamphaus GD, Colorado PC, Panka DJ et al (2000) Canstatin, a novel matrix-derived inhibitor of angiogenesis and tumor growth. J Biol Chem 275(2):1209–1215

    Article  PubMed  CAS  Google Scholar 

  14. Petitclerc E, Boutaud A, Prestayko A et al (2000) New functions for non-collagenous domains of human collagen type IV. Novel integrin ligands inhibiting angiogenesis and tumor growth in vivo. J Biol Chem 275(11):8051–8061

    Article  PubMed  CAS  Google Scholar 

  15. Maeshima Y, Yerramalla UL, Dhanabal M et al (2001) Extracellular matrix-derived peptide binds to alpha(v)beta(3) integrin and inhibits angiogenesis. J Biol Chem 276(34):31959–31968

    Article  PubMed  CAS  Google Scholar 

  16. O’Reilly MS, Boehm T, Shing Y et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  17. Mongiat M, Sweeney SM, San Antonio JD et al (2003) Endorepellin, a novel inhibitor of angiogenesis derived from the C terminus of perlecan. J Biol Chem 278(6):4238–4249

    Article  PubMed  CAS  Google Scholar 

  18. Yi M, Ruoslahti E (2001) A fibronectin fragment inhibits tumor growth, angiogenesis, and metastasis. Proc Natl Acad Sci USA 98(2):620–624

    Article  PubMed  CAS  Google Scholar 

  19. Good DJ, Polverini PJ, Rastinejad F et al (1990) A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87(17):6624–6628

    Article  PubMed  CAS  Google Scholar 

  20. Taraboletti G, Roberts D, Liotta LA et al (1990) Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J Cell Biol 111(2):765–772

    Article  PubMed  CAS  Google Scholar 

  21. Garlanda C, Bottazzi B, Bastone A et al (2005) Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu Rev Immunol 23:337–366

    Article  PubMed  CAS  Google Scholar 

  22. Margheri F, Serrati S, Lapucci A et al (2009) Systemic sclerosis-endothelial cell antiangiogenic pentraxin 3 and matrix metalloprotease 12 control human breast cancer tumor vascularization and development in mice. Neoplasia 11(10):1106–1115

    PubMed  CAS  Google Scholar 

  23. Alessi P, Leali D, Camozzi M et al (2009) Anti-FGF2 approaches as a strategy to compensate resistance to anti-VEGF therapy: long-pentraxin 3 as a novel antiangiogenic FGF2-antagonist. Eur Cytokine Netw 20(4):225–234

    PubMed  CAS  Google Scholar 

  24. Moses MA, Sudhalter J, Langer R (1990) Identification of an inhibitor of neovascularization from cartilage. Science 248(4961):1408–1410

    Article  PubMed  CAS  Google Scholar 

  25. Rastinejad F, Polverini PJ, Bouck NP (1989) Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56(3):345–355

    Article  PubMed  CAS  Google Scholar 

  26. O’Reilly MS, Pirie-Shepherd S, Lane WS et al (1999) Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science 285(5435):1926–1928

    Article  PubMed  Google Scholar 

  27. Pike SE, Yao L, Jones KD et al (1998) Vasostatin, a calreticulin fragment, inhibits angiogenesis and suppresses tumor growth. J Exp Med 188(12):2349–2356

    Article  PubMed  CAS  Google Scholar 

  28. Okamura Y, Watari M, Jerud ES et al (2001) The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem 276(13):10229–10233

    Article  PubMed  CAS  Google Scholar 

  29. Huegel R, Velasco P, De La Luz Sierra M et al (2007) Novel anti-inflammatory properties of the angiogenesis inhibitor vasostatin. J Invest Dermatol 127(1):65–74

    Article  PubMed  CAS  Google Scholar 

  30. Taylor S, Folkman J (1982) Protamine is an inhibitor of angiogenesis. Nature 297(5864):307–312

    Article  PubMed  CAS  Google Scholar 

  31. Maione TE, Gray GS, Petro J et al (1990) Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides. Science 247(4938):77–79

    Article  PubMed  CAS  Google Scholar 

  32. Sharpe RJ, Byers HR, Scott CF et al (1990) Growth inhibition of murine melanoma and human colon carcinoma by recombinant human platelet factor 4. J Natl Cancer Inst 82(10):848–853

    Article  PubMed  CAS  Google Scholar 

  33. Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci USA 90(22):10705–10709

    Article  PubMed  CAS  Google Scholar 

  34. Dawson DW, Volpert OV, Gillis P et al (1999) Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 285(5425):245–248

    Article  PubMed  CAS  Google Scholar 

  35. Maisonpierre PC, Suri C, Jones PF et al (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322):55–60

    Article  PubMed  CAS  Google Scholar 

  36. Bates DO, Cui TG, Doughty JM et al (2002) VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma. Cancer Res 62(14):4123–4131

    PubMed  CAS  Google Scholar 

  37. O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79(2):315–328

    Article  PubMed  Google Scholar 

  38. Abad M, Arni R, Grella D et al (2002) The X-ray crystallographic structure of the angiogenesis inhibitor angiostatin. J Mol Biol 318:1009–1017

    Article  PubMed  CAS  Google Scholar 

  39. O’Reilly MS, Wiederschain D, Stetler SW et al (1999) Regulation of angiostatin production by matrix metalloproteinase-2 in a model of concomitant resistance. J Biol Chem 274(41):29568–29571

    Article  PubMed  Google Scholar 

  40. Paleari L, Brigati C, Anfosso L et al (2005) Anti-angiogenesis in search of mechanisms: angiostatin as a prototype. In: Weber GF (ed) Cancer therapy: molecular targets in tumor-host interactions. Horizon Scientific Press, Norfolk, pp 143–168

  41. Ito H, Rovira II, Bloom ML et al (1999) Endothelial progenitor cells as putative targets for angiostatin. Cancer Res 59(23):5875–5877

    PubMed  CAS  Google Scholar 

  42. Walter JJ, Sane DC (1999) Angiostatin binds to smooth muscle cells in the coronary artery and inhibits smooth muscle cell proliferation and migration In vitro. Arterioscler Thromb Vasc Biol 19(9):2041–2048

    PubMed  CAS  Google Scholar 

  43. Moser T, Kenan D, Ashley T et al (2001) Endothelial cell surface F1–F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin. Proc Natl Acad Sci USA 98:6656–6661

    Article  PubMed  CAS  Google Scholar 

  44. Benelli R, Morini M, Carrozzino F et al (2002) Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation. FASEB J 16:267–269

    PubMed  CAS  Google Scholar 

  45. Wahl ML, Kenan DJ, Gonzalez-Gronow M et al (2005) Angiostatin’s molecular mechanism: aspects of specificity and regulation elucidated. J Cell Biochem 96(2):242–261

    Article  PubMed  CAS  Google Scholar 

  46. Chavakis T, Athanasopoulos A, Rhee JS et al (2005) Angiostatin is a novel anti-inflammatory factor by inhibiting leukocyte recruitment. Blood 105(3):1036–1043

    Article  PubMed  CAS  Google Scholar 

  47. Benelli R, Morini M, Brigati C et al (2003) Angiostatin inhibits extracellular HIV-Tat-induced inflammatory angiogenesis. Int J Oncol 22(1):87–91

    PubMed  CAS  Google Scholar 

  48. Moulton KS, Vakili K, Zurakowski D et al (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci USA 100(8):4736–4741

    Article  PubMed  CAS  Google Scholar 

  49. Perri SR, Nalbantoglu J, Annabi B et al (2005) Plasminogen kringle 5-engineered glioma cells block migration of tumor-associated macrophages and suppress tumor vascularization and progression. Cancer Res 65(18):8359–8365

    Article  PubMed  CAS  Google Scholar 

  50. Indraccolo S, Pfeffer U, Minuzzo S et al (2007) Identification of genes selectively regulated by interferons in endothelial cells. J Immunol 178(2):1122–1135

    PubMed  CAS  Google Scholar 

  51. Torpey N, Maher SE, Bothwell AL et al (2004) Interferon alpha but not interleukin 12 activates STAT4 signaling in human vascular endothelial cells. J Biol Chem 279(25):26789–26796

    Article  PubMed  CAS  Google Scholar 

  52. Albini A, Brigati C, Ventura A et al (2009) Angiostatin anti-angiogenesis requires IL-12: the innate immune system as a key target. J Transl Med 7:5

    Article  PubMed  CAS  Google Scholar 

  53. Morini M, Albini A, Lorusso G et al (2004) Prevention of angiogenesis by naked DNA IL-12 gene transfer: angioprevention by immunogene therapy. Gene Ther 11(3):284–291

    Article  PubMed  CAS  Google Scholar 

  54. Chen YH, Wu HL, Li C et al. (2006) Anti-angiogenesis mediated by angiostatin K1-3, K1-4 and K1-4.5. Involvement of p53, FasL, AKT and mRNA deregulation. Thromb Haemost 95(4):668–677

    Google Scholar 

  55. Yu Y, Moulton KS, Khan MK et al (2004) E-selectin is required for the antiangiogenic activity of endostatin. Proc Natl Acad Sci USA 101(21):8005–8010

    Article  PubMed  CAS  Google Scholar 

  56. Vannini N, Pfeffer U, Lorusso G et al (2008) Endothelial cell aging and apoptosis in prevention and disease: E-selectin expression and modulation as a model. Curr Pharm Des 14(3):221–225

    Article  PubMed  CAS  Google Scholar 

  57. Mazzanti CM, Tandle A, Lorang D et al (2004) Early genetic mechanisms underlying the inhibitory effects of endostatin and fumagillin on human endothelial cells. Genome Res 14(8):1585–1593

    Article  PubMed  CAS  Google Scholar 

  58. Hanai J, Gloy J, Karumanchi SA et al (2002) Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol 158(3):529–539

    Article  PubMed  CAS  Google Scholar 

  59. Schmidt A, Wenzel D, Thorey I et al (2006) Endostatin influences endothelial morphology via the activated ERK1/2-kinase endothelial morphology and signal transduction. Microvasc Res 71(3):152–162

    Article  PubMed  CAS  Google Scholar 

  60. Wickstrom SA, Alitalo K, Keski-Oja J (2002) Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res 62(19):5580–5589

    PubMed  CAS  Google Scholar 

  61. Zhang W, Chuang YJ, Swanson R et al (2004) Antiangiogenic antithrombin down-regulates the expression of the proangiogenic heparan sulfate proteoglycan, perlecan, in endothelial cells. Blood 103(4):1185–1191

    Article  PubMed  CAS  Google Scholar 

  62. Noonan DM, Fulle A, Valente P et al (1991) The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule. J Biol Chem 266(34):22939–22947

    PubMed  CAS  Google Scholar 

  63. Aviezer D, Iozzo RV, Noonan DM et al (1997) Suppression of autocrine and paracrine functions of basic fibroblast growth factor by stable expression of perlecan antisense cDNA. Mol Cell Biol 17(4):1938–1946

    PubMed  CAS  Google Scholar 

  64. Zhang W, Chuang YJ, Jin T et al (2006) Antiangiogenic antithrombin induces global changes in the gene expression profile of endothelial cells. Cancer Res 66(10):5047–5055

    Article  PubMed  CAS  Google Scholar 

  65. Guedez L, Martinez A, Zhao S et al (2005) Tissue inhibitor of metalloproteinase 1 (TIMP-1) promotes plasmablastic differentiation of a Burkitt lymphoma cell line: implications in the pathogenesis of plasmacytic/plasmablastic tumors. Blood 105(4):1660–1668

    Article  PubMed  CAS  Google Scholar 

  66. Lam P, Sian Lim K, Mei Wang S et al (2005) A microarray study to characterize the molecular mechanism of TIMP-3-mediated tumor rejection. Mol Ther 12(1):144–152

    Article  PubMed  CAS  Google Scholar 

  67. Fotsis T, Zhang Y, Pepper MS et al (1994) The endogenous oestrogen metabolite 2-methoxyoestradiol inhibits angiogenesis and suppresses tumour growth. Nature 368(6468):237–239

    Article  PubMed  CAS  Google Scholar 

  68. Wood L, Leese MR, Leblond B et al (2001) Inhibition of superoxide dismutase by 2-methoxyoestradiol analogues and oestrogen derivatives: structure-activity relationships. Anticancer Drug Des 16(4–5):209–215

    PubMed  CAS  Google Scholar 

  69. Albini A, Paglieri I, Orengo G et al (1997) The beta-core fragment of human chorionic gonadotrophin inhibits growth of Kaposi’s sarcoma-derived cells and a new immortalized Kaposi’s sarcoma cell line. AIDS 11(6):713–721

    Article  PubMed  CAS  Google Scholar 

  70. Pfeffer U, Bisacchi D, Morini M et al (2002) Human chorionic gonadotropin inhibits Kaposi’s sarcoma associated angiogenesis, matrix metalloprotease activity, and tumor growth. Endocrinology 143(8):3114–3121

    Article  PubMed  CAS  Google Scholar 

  71. Guo S, Russo IH, Lareef MH et al (2004) Effect of human chorionic gonadotropin in the gene expression profile of MCF-7 cells. Int J Oncol 24(2):399–407

    PubMed  CAS  Google Scholar 

  72. Florio T, Morini M, Villa V et al (2003) Somatostatin inhibits tumor angiogenesis and growth via somatostatin receptor-3-mediated regulation of endothelial nitric oxide synthase and mitogen-activated protein kinase activities. Endocrinology 144(4):1574–1584

    Article  PubMed  CAS  Google Scholar 

  73. Patel SG, Zhou G, Liu SH et al (2009) Microarray analysis of somatostatin receptor 5-regulated gene expression profiles in murine pancreas. World J Surg 33(4):630–637

    Article  PubMed  Google Scholar 

  74. D’Angelo G, Struman I, Martial J et al (1995) Activation of mitogen-activated protein kinases by vascular endothelial growth factor and basic fibroblast growth factor in capillary endothelial cells is inhibited by the antiangiogenic factor 16-kDa N-terminal fragment of prolactin. Proc Natl Acad Sci USA 92(14):6374–6378

    Article  PubMed  Google Scholar 

  75. Struman I, Bentzien F, Lee H et al (1999) Opposing actions of intact and N-terminal fragments of the human prolactin/growth hormone family members on angiogenesis: an efficient mechanism for the regulation of angiogenesis. Proc Natl Acad Sci USA 96(4):1246–1251

    Article  PubMed  CAS  Google Scholar 

  76. Tabruyn SP, Sabatel C, Nguyen NQ et al (2007) The angiostatic 16 K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol 21(6):1422–1429

    Article  PubMed  CAS  Google Scholar 

  77. Pfeffer U, Ferrari N, Dell’Eva R et al (2005) Molecular mechanisms of action of angiopreventive anti-oxidants on endothelial cells: microarray gene expression analyses. Mutat Res 591(1–2):198–211

    PubMed  CAS  Google Scholar 

  78. Kanda N, Watanabe S (2007) Prolactin enhances interferon-gamma-induced production of CXC ligand 9 (CXCL9), CXCL10, and CXCL11 in human keratinocytes. Endocrinology 148(5):2317–2325

    Article  PubMed  CAS  Google Scholar 

  79. Dvorak HF, Gresser I (1989) Microvascular injury in pathogenesis of interferon-induced necrosis of subcutaneous tumors in mice. J Natl Cancer Inst 81(7):497–502

    Article  PubMed  CAS  Google Scholar 

  80. Sidky YA, Borden EC (1987) Inhibition of angiogenesis by interferons: effects on tumor- and lymphocyte-induced vascular responses. Cancer Res 47(19):5155–5161

    PubMed  CAS  Google Scholar 

  81. Minuzzo S, Moserle L, Indraccolo S et al (2007) Angiogenesis meets immunology: cytokine gene therapy of cancer. Mol Aspects Med 28(1):59–86

    Article  PubMed  CAS  Google Scholar 

  82. Singh RP, Dhanalakshmi S, Agarwal C et al (2005) Silibinin strongly inhibits growth and survival of human endothelial cells via cell cycle arrest and downregulation of survivin, Akt and NF-kappaB: implications for angioprevention and antiangiogenic therapy. Oncogene 24(7):1188–1202

    Article  PubMed  CAS  Google Scholar 

  83. Oliveira IC, Sciavolino PJ, Lee TH et al (1992) Downregulation of interleukin 8 gene expression in human fibroblasts: unique mechanism of transcriptional inhibition by interferon. Proc Natl Acad Sci USA 89(19):9049–9053

    Article  PubMed  CAS  Google Scholar 

  84. von Marschall Z, Scholz A, Cramer T et al (2003) Effects of interferon alpha on vascular endothelial growth factor gene transcription and tumor angiogenesis. J Natl Cancer Inst 95(6):437–448

    Article  Google Scholar 

  85. Albini A, Marchisone C, Del Grosso F et al (2000) Inhibition of angiogenesis and vascular tumor growth by interferon-producing cells: A gene therapy approach. Am J Pathol 156(4):1381–1393

    PubMed  CAS  Google Scholar 

  86. Indraccolo S, Gola E, Rosato A et al (2002) Differential effects of angiostatin, endostatin and interferon-alpha(1) gene transfer on in vivo growth of human breast cancer cells. Gene Ther 9(13):867–878

    Article  PubMed  CAS  Google Scholar 

  87. Persano L, Moserle L, Esposito G et al (2009) Interferon-alpha counteracts the angiogenic switch and reduces tumor cell proliferation in a spontaneous model of prostatic cancer. Carcinogenesis 30(5):851–860

    Article  PubMed  CAS  Google Scholar 

  88. Indraccolo S, Pfeffer U, Minuzzo S et al (2007) Identification of genes selectively regulated by IFNs in endothelial cells. J Immunol 178(2):1122–1135

    PubMed  CAS  Google Scholar 

  89. Kitaya K, Yasuo T, Yamaguchi T et al (2007) Genes regulated by interferon-gamma in human uterine microvascular endothelial cells. Int J Mol Med 20(5):689–697

    PubMed  CAS  Google Scholar 

  90. Sana TR, Janatpour MJ, Sathe M et al (2005) Microarray analysis of primary endothelial cells challenged with different inflammatory and immune cytokines. Cytokine 29(6):256–269

    PubMed  CAS  Google Scholar 

  91. Taylor KL, Leaman DW, Grane R et al (2008) Identification of interferon-beta-stimulated genes that inhibit angiogenesis in vitro. J Interferon Cytokine Res 28(12):733–740

    Article  PubMed  CAS  Google Scholar 

  92. Guenzi E, Topolt K, Lubeseder-Martellato C et al (2003) The guanylate binding protein-1 GTPase controls the invasive and angiogenic capability of endothelial cells through inhibition of MMP-1 expression. EMBO J 22(15):3772–3782

    Article  PubMed  CAS  Google Scholar 

  93. Lubeseder-Martellato C, Guenzi E, Jorg A et al (2002) Guanylate-binding protein-1 expression is selectively induced by inflammatory cytokines and is an activation marker of endothelial cells during inflammatory diseases. Am J Pathol 161(5):1749–1759

    PubMed  CAS  Google Scholar 

  94. Angiolillo AL, Sgadari C, Taub DD et al (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182(1):155–162

    Article  PubMed  CAS  Google Scholar 

  95. Sgadari C, Angiolillo AL, Cherney BW et al (1996) Interferon-inducible protein-10 identified as a mediator of tumor necrosis in vivo. Proc Natl Acad Sci USA 93(24):13791–13796

    Article  PubMed  CAS  Google Scholar 

  96. De Bouard S, Guillamo JS, Christov C et al (2003) Antiangiogenic therapy against experimental glioblastoma using genetically engineered cells producing interferon-alpha, angiostatin, or endostatin. Hum Gene Ther 14(9):883–895

    Article  PubMed  CAS  Google Scholar 

  97. Indraccolo S, Moserle L, Tisato V et al (2006) Gene therapy of ovarian cancer with IFN-alpha-producing fibroblasts: comparison of constitutive and inducible vectors. Gene Ther 13(12):953–965

    Article  PubMed  CAS  Google Scholar 

  98. Indraccolo S, Tisato V, Tosello V et al (2005) Interferon-alpha gene therapy by lentiviral vectors contrasts ovarian cancer growth through angiogenesis inhibition. Hum Gene Ther 16(8):957–970

    Article  PubMed  CAS  Google Scholar 

  99. Rozera C, Carlei D, Lollini PL et al (1999) Interferon (IFN)-beta gene transfer into TS/A adenocarcinoma cells and comparison with IFN-alpha: differential effects on tumorigenicity and host response. Am J Pathol 154(4):1211–1222

    PubMed  CAS  Google Scholar 

  100. Belardelli F, Gresser I, Maury C et al (1983) Antitumor effects of interferon in mice injected with interferon-sensitive and interferon-resistant Friend leukemia cells. III. Inhibition of growth and necrosis of tumors implanted subcutaneously. Int J Cancer 31(5):649–653

    Article  PubMed  CAS  Google Scholar 

  101. Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603

    Article  PubMed  CAS  Google Scholar 

  102. Curnis F, Gasparri A, Sacchi A et al (2005) Targeted delivery of IFNgamma to tumor vessels uncouples antitumor from counterregulatory mechanisms. Cancer Res 65(7):2906–2913

    Article  PubMed  CAS  Google Scholar 

  103. Tedjarati S, Baker CH, Apte S et al (2002) Synergistic therapy of human ovarian carcinoma implanted orthotopically in nude mice by optimal biological dose of pegylated interferon alpha combined with paclitaxel. Clin Cancer Res 8(7):2413–2422

    PubMed  CAS  Google Scholar 

  104. Samarajiwa SA, Forster S, Auchettl K et al (2009) INTERFEROME: the database of interferon regulated genes. Nucleic Acids Res 37(Database issue):D852–D857

    Google Scholar 

  105. Kerbel RS, Hawley RG (1995) Interleukin 12: newest member of the antiangiogenesis club. J Natl Cancer Inst 87(8):557–559

    Article  PubMed  CAS  Google Scholar 

  106. Sgadari C, Angiolillo AL, Tosato G (1996) Inhibition of angiogenesis by interleukin-12 is mediated by the interferon-inducible protein 10. Blood 87(9):3877–3882

    PubMed  CAS  Google Scholar 

  107. Voest EE, Kenyon BM, O’Reilly MS et al (1995) Inhibition of angiogenesis in vivo by interleukin 12. J Natl Cancer Inst 87(8):581–586

    Article  PubMed  CAS  Google Scholar 

  108. Yao L, Sgadari C, Furuke K et al (1999) Contribution of natural killer cells to inhibition of angiogenesis by interleukin-12. Blood 93(5):1612–1621

    PubMed  CAS  Google Scholar 

  109. Shi X, Cao S, Mitsuhashi M et al (2004) Genome-wide analysis of molecular changes in IL-12-induced control of mammary carcinoma via IFN-gamma-independent mechanisms. J Immunol 172(7):4111–4122

    PubMed  CAS  Google Scholar 

  110. Clark AF, Mellon J, Li XY et al (1999) Inhibition of intraocular tumor growth by topical application of the angiostatic steroid anecortave acetate. Invest Ophthalmol Vis Sci 40(9):2158–2162

    PubMed  CAS  Google Scholar 

  111. Parkins CS, Holder AL, Hill SA et al (2000) Determinants of anti-vascular action by combretastatin A-4 phosphate: role of nitric oxide. Br J Cancer 83(6):811–816

    Article  PubMed  CAS  Google Scholar 

  112. Ingber D, Fujita T, Kishimoto S et al (1990) Synthetic analogues of fumagillin that inhibit angiogenesis and suppress tumour growth. Nature 348(6301):555–557

    Article  PubMed  CAS  Google Scholar 

  113. D’Amato RJ, Loughnan MS, Flynn E et al (1994) Thalidomide is an inhibitor of angiogenesis. Proc Natl Acad Sci USA 91(9):4082–4085

    Article  PubMed  Google Scholar 

  114. Vacca A, Scavelli C, Montefusco V et al (2005) Thalidomide downregulates angiogenic genes in bone marrow endothelial cells of patients with active multiple myeloma. J Clin Oncol 23(23):5334–5346

    Article  PubMed  CAS  Google Scholar 

  115. Majumdar S, Lamothe B, Aggarwal BB (2002) Thalidomide suppresses NF-kappa B activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J Immunol 168(6):2644–2651

    PubMed  CAS  Google Scholar 

  116. Ferrari N, Pfeffer U, Dell’Eva R et al (2005) The transforming growth factor-beta family members bone morphogenetic protein-2 and macrophage inhibitory cytokine-1 as mediators of the antiangiogenic activity of N-(4-hydroxyphenyl)retinamide. Clin Cancer Res 11(12):4610–4619

    Article  PubMed  CAS  Google Scholar 

  117. Costa A, Formelli F, Chiesa F et al (1994) Prospects of chemoprevention of human cancers with the synthetic retinoid fenretinide. Cancer Res 54(7 Suppl):2032s–2037s

    PubMed  CAS  Google Scholar 

  118. Blackwell KL, Haroon ZA, Shan S et al (2000) Tamoxifen inhibits angiogenesis in estrogen receptor-negative animal models. Clin Cancer Res 6(11):4359–4364

    PubMed  CAS  Google Scholar 

  119. del Carmen Garcia M, olina Wolgien M, da Silva ID, Villanova FE et al (2005) Differential gene expression assessed by cDNA microarray analysis in breast cancer tissue under tamoxifen treatment. Eur J Gynaecol Oncol 26(5):501–504

    Google Scholar 

  120. Itoh T, Karlsberg K, Kijima I et al (2005) Letrozole-, anastrozole-, and tamoxifen-responsive genes in MCF-7aro cells: a microarray approach. Mol Cancer Res 3(4):203–218

    PubMed  CAS  Google Scholar 

  121. Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3(5):391–400

    Article  PubMed  CAS  Google Scholar 

  122. Murphy DA, Makonnen S, Lassoued W et al (2006) Inhibition of tumor endothelial ERK activation, angiogenesis, and tumor growth by sorafenib (BAY43–9006). Am J Pathol 169(5):1875–1885

    Article  PubMed  CAS  Google Scholar 

  123. Sun L, Liang C, Shirazian S et al (2003) Discovery of 5-[5-fluoro-2-oxo-1, 2- dihydroindol-(3Z)-ylidenemethyl]-2, 4- dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J Med Chem 46(7):1116–1119

    Article  PubMed  CAS  Google Scholar 

  124. Fischer C, Jonckx B, Mazzone M et al (2007) Anti-PlGF inhibits growth of VEGF(R)-inhibitor-resistant tumors without affecting healthy vessels. Cell 131(3):463–475

    Article  PubMed  CAS  Google Scholar 

  125. Guba M, von Breitenbuch P, Steinbauer M et al (2002) Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis: involvement of vascular endothelial growth factor. Nat Med 8(2):128–135

    Article  PubMed  CAS  Google Scholar 

  126. Jia Z, Zhang J, Wei D et al (2007) Molecular basis of the synergistic antiangiogenic activity of bevacizumab and mithramycin A. Cancer Res 67(10):4878–4885

    Article  PubMed  CAS  Google Scholar 

  127. Yang SX, Steinberg SM, Nguyen D et al (2008) Gene expression profile and angiogenic marker correlates with response to neoadjuvant bevacizumab followed by bevacizumab plus chemotherapy in breast cancer. Clin Cancer Res 14(18):5893–5899

    Article  PubMed  CAS  Google Scholar 

  128. Albini A, Mirisola V, Pfeffer U (2008) Metastasis signatures: genes regulating tumor-microenvironment interactions predict metastatic behavior. Cancer Metastasis Rev 27(1):75–83

    Article  PubMed  CAS  Google Scholar 

  129. Moreno-Vinasco L, Gomberg-Maitland M, Maitland ML et al (2008) Genomic assessment of a multikinase inhibitor, sorafenib, in a rodent model of pulmonary hypertension. Physiol Genomics 33(2):278–291

    Article  PubMed  CAS  Google Scholar 

  130. Newell P, Toffanin S, Villanueva A et al (2009) Ras pathway activation in hepatocellular carcinoma and anti-tumoral effect of combined sorafenib and rapamycin in vivo. J Hepatol 51(4):725–733

    Article  PubMed  CAS  Google Scholar 

  131. Kasukabe T, Okabe-Kado J, Kato N et al (2005) Effects of combined treatment with rapamycin and cotylenin A, a novel differentiation-inducing agent, on human breast carcinoma MCF-7 cells and xenografts. Breast Cancer Res 7(6):R1097–R1110

    Article  PubMed  CAS  Google Scholar 

  132. Grolleau A, Bowman J, Pradet-Balade B et al (2002) Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 277(25):22175–22184

    Article  PubMed  CAS  Google Scholar 

  133. Park IH, Chen J (2005) Mammalian target of rapamycin (mTOR) signaling is required for a late-stage fusion process during skeletal myotube maturation. J Biol Chem 280(36):32009–32017

    Article  PubMed  CAS  Google Scholar 

  134. Gera JF, Mellinghoff IK, Shi Y et al (2004) AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 279(4):2737–2746

    Article  PubMed  CAS  Google Scholar 

  135. van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347(25):1999–2009

    Article  PubMed  Google Scholar 

  136. Ramaswamy S, Ross KN, Lander ES et al (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33(1):49–54

    Article  PubMed  CAS  Google Scholar 

  137. Webb T (2003) Microarray studies challenge theories of metastasis. J Natl Cancer Inst 95(5):350–351

    Article  PubMed  Google Scholar 

  138. Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418(6900):823

    Article  PubMed  CAS  Google Scholar 

  139. Pfeffer U, Noonan D, Albini A (2003) Re: microarray studies challenge theories of metastasis. J Natl Cancer Inst 95(11):829

    PubMed  Google Scholar 

  140. Albini A, Morini M, D’Agostini F et al (2001) Inhibition of angiogenesis-driven Kaposi’s sarcoma tumor growth in nude mice by oral N-acetylcysteine. Cancer Res 61(22):8171–8178

    PubMed  CAS  Google Scholar 

  141. Garbisa S, Biggin S, Cavallarin N et al (1999) Tumor invasion: molecular shears blunted by green tea. Nat Med 5(11):1216

    Article  PubMed  CAS  Google Scholar 

  142. Yu YM, Wang ZH, Liu CH et al (2007) Ellagic acid inhibits IL-1beta-induced cell adhesion molecule expression in human umbilical vein endothelial cells. Br J Nutr 97(4):692–698

    Article  PubMed  CAS  Google Scholar 

  143. Kumar A, Dhawan S, Hardegen NJ et al (1998) Curcumin (Diferuloylmethane) inhibition of tumor necrosis factor (TNF)-mediated adhesion of monocytes to endothelial cells by suppression of cell surface expression of adhesion molecules and of nuclear factor-kappaB activation. Biochem Pharmacol 55(6):775–783

    Article  PubMed  CAS  Google Scholar 

  144. Lorusso G, Vannini N, Sogno I et al (2009) Mechanisms of Hyperforin as an anti-angiogenic angioprevention agent. Eur J Cancer 45(8):1474–1484

    Article  PubMed  CAS  Google Scholar 

  145. Khachigian LM, Collins T, Fries JW (1997) N-acetyl cysteine blocks mesangial VCAM-1 and NF-kappa B expression in vivo. Am J Pathol 151(5):1225–1229

    PubMed  CAS  Google Scholar 

  146. Sethi G, Ahn KS, Sung B et al (2008) Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol Cancer Ther 7(6):1604–1614

    Article  PubMed  CAS  Google Scholar 

  147. Ahmad R, Raina D, Meyer C et al (2006) Triterpenoid CDDO-Me blocks the NF-kappaB pathway by direct inhibition of IKKbeta on Cys-179. J Biol Chem 281(47):35764–35769

    Article  PubMed  CAS  Google Scholar 

  148. Albini A, Dell’Eva R, Vene R et al (2006) Mechanisms of the antiangiogenic activity by the hop flavonoid xanthohumol: NF-kappaB and Akt as targets. FASEB J 20(3):527–529

    PubMed  CAS  Google Scholar 

  149. Lapillonne H, Konopleva M, Tsao T et al (2003) Activation of peroxisome proliferator-activated receptor gamma by a novel synthetic triterpenoid 2-cyano-3, 12-dioxooleana-1, 9-dien-28-oic acid induces growth arrest and apoptosis in breast cancer cells. Cancer Res 63(18):5926–5939

    PubMed  CAS  Google Scholar 

  150. Ahmad R, Raina D, Meyer C et al (2008) Triterpenoid CDDO-methyl ester inhibits the Janus-activated kinase-1 (JAK1)– >signal transducer and activator of transcription-3 (STAT3) pathway by direct inhibition of JAK1 and STAT3. Cancer Res 68(8):2920–2926

    Article  PubMed  CAS  Google Scholar 

  151. Sussan TE, Rangasamy T, Blake DJ et al (2009) Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci USA 106(1):250–255

    Article  PubMed  Google Scholar 

  152. Chen HH, Zhou HJ, Wu GD et al (2004) Inhibitory effects of artesunate on angiogenesis and on expressions of vascular endothelial growth factor and VEGF receptor KDR/flk-1. Pharmacology 71(1):1–9

    Article  PubMed  CAS  Google Scholar 

  153. Pang X, Yi Z, Zhang X et al (2009) Acetyl-11-keto-beta-boswellic acid inhibits prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. Cancer Res 69(14):5893–5900

    Article  PubMed  CAS  Google Scholar 

  154. Yi T, Yi Z, Cho SG et al (2008) Gambogic acid inhibits angiogenesis and prostate tumor growth by suppressing vascular endothelial growth factor receptor 2 signaling. Cancer Res 68(6):1843–1850

    Article  PubMed  CAS  Google Scholar 

  155. Larghero P, Vene R, Minghelli S et al (2007) Biological assays and genomic analysis reveal lipoic acid modulation of endothelial cell behavior and gene expression. Carcinogenesis 28(5):1008–1020

    Article  PubMed  CAS  Google Scholar 

  156. Park MJ, Kim EH, Park IC et al (2002) Curcumin inhibits cell cycle progression of immortalized human umbilical vein endothelial (ECV304) cells by up-regulating cyclin-dependent kinase inhibitor, p21WAF1/CIP1, p27KIP1 and p53. Int J Oncol 21(2):379–383

    PubMed  CAS  Google Scholar 

  157. Stierum R, Conesa A, Heijne W et al (2008) Transcriptome analysis provides new insights into liver changes induced in the rat upon dietary administration of the food additives butylated hydroxytoluene, curcumin, propyl gallate and thiabendazole. Food Chem Toxicol 46(8):2616–2628

    Article  PubMed  CAS  Google Scholar 

  158. Meng Q, Velalar CN, Ruan R (2008) Regulating the age-related oxidative damage, mitochondrial integrity, and antioxidative enzyme activity in Fischer 344 rats by supplementation of the antioxidant epigallocatechin-3-gallate. Rejuvenation Res 11(3):649–660

    Article  PubMed  CAS  Google Scholar 

  159. Thangapazham RL, Passi N, Maheshwari RK (2007) Green tea polyphenol and epigallocatechin gallate induce apoptosis and inhibit invasion in human breast cancer cells. Cancer Biol Ther 6(12):1938–1943

    Article  PubMed  CAS  Google Scholar 

  160. Shen G, Xu C, Hu R et al (2005) Comparison of (−)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6 J mice and C57BL/6 J/Nrf2 (−/−) mice. Pharm Res 22(11):1805–1820

    Article  PubMed  CAS  Google Scholar 

  161. Guo S, Yang S, Taylor C et al (2005) Green tea polyphenol epigallocatechin-3 gallate (EGCG) affects gene expression of breast cancer cells transformed by the carcinogen 7, 12-dimethylbenz[a]anthracene. J Nutr 135(12 Suppl):2978S–2986S

    PubMed  CAS  Google Scholar 

  162. Guo S, Lu J, Subramanian A et al (2006) Microarray-assisted pathway analysis identifies mitogen-activated protein kinase signaling as a mediator of resistance to the green tea polyphenol epigallocatechin 3-gallate in her-2/neu-overexpressing breast cancer cells. Cancer Res 66(10):5322–5329

    Article  PubMed  CAS  Google Scholar 

  163. Bae JY, Kanamune J, Han DW et al (2009) Reversible regulation of cell cycle-related genes by epigallocatechin gallate for hibernation of neonatal human tarsal fibroblasts. Cell Transplant 18(4):459–469

    Article  PubMed  Google Scholar 

  164. Hsu S, Dickinson DP, Qin H et al (2005) Inhibition of autoantigen expression by (−)-epigallocatechin-3-gallate (the major constituent of green tea) in normal human cells. J Pharmacol Exp Ther 315(2):805–811

    Article  PubMed  CAS  Google Scholar 

  165. Wolfram S, Raederstorff D, Preller M et al (2006) Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 136(10):2512–2518

    PubMed  CAS  Google Scholar 

  166. Nones K, Dommels YE, Martell S et al (2009) The effects of dietary curcumin and rutin on colonic inflammation and gene expression in multidrug resistance gene-deficient (mdr1a−/−) mice, a model of inflammatory bowel diseases. Br J Nutr 101(2):169–181

    Article  PubMed  CAS  Google Scholar 

  167. Sun M, Estrov Z, Ji Y et al (2008) Curcumin (diferuloylmethane) alters the expression profiles of microRNAs in human pancreatic cancer cells. Mol Cancer Ther 7(3):464–473

    Article  PubMed  CAS  Google Scholar 

  168. Su CC, Chen GW, Lin JG et al (2006) Curcumin inhibits cell migration of human colon cancer colo 205 cells through the inhibition of nuclear factor kappa B/p65 and down-regulates cyclooxygenase-2 and matrix metalloproteinase-2 expressions. Anticancer Res 26(2A):1281–1288

    Google Scholar 

  169. Ramachandran C, Rodriguez S, Ramachandran R et al (2005) Expression profiles of apoptotic genes induced by curcumin in human breast cancer and mammary epithelial cell lines. Anticancer Res 25(5):3293–3302

    PubMed  CAS  Google Scholar 

  170. Bachmeier BE, Mohrenz IV, Mirisola V et al (2008) Curcumin downregulates the inflammatory cytokines CXCL1 and -2 in breast cancer cells via NFkappaB. Carcinogenesis 29(4):779–789

    Article  PubMed  CAS  Google Scholar 

  171. Bachmeier B, Nerlich AG, Iancu CM et al (2007) The chemopreventive polyphenol Curcumin prevents hematogenous breast cancer metastases in immunodeficient mice. Cell Physiol Biochem 19(1–4):137–152

    Article  PubMed  CAS  Google Scholar 

  172. Arbiser JL, Klauber N, Rohan R et al (1998) Curcumin is an in vivo inhibitor of angiogenesis. Mol Med 4(6):376–383

    PubMed  CAS  Google Scholar 

  173. Dell’Eva R, Pfeffer U, Vene R et al (2004) Inhibition of angiogenesis in vivo and growth of Kaposi’s sarcoma xenograft tumors by the anti-malarial artesunate. Biochem Pharmacol 68(12):2359–2366

    Article  PubMed  CAS  Google Scholar 

  174. Anfosso L, Efferth T, Albini A et al (2006) Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins. Pharmacogenomics J 6(4):269–278

    PubMed  CAS  Google Scholar 

  175. Gonzalez-Sarrias A, Espin JC, Tomas-Barberan FA et al (2009) Gene expression, cell cycle arrest and MAPK signalling regulation in Caco-2 cells exposed to ellagic acid and its metabolites, urolithins. Mol Nutr Food Res 53(6):686–698

    Article  PubMed  CAS  Google Scholar 

  176. Gu H, You Q, Liu W et al (2008) Gambogic acid induced tumor cell apoptosis by T lymphocyte activation in H22 transplanted mice. Int Immunopharmacol 8(11):1493–1502

    Article  PubMed  CAS  Google Scholar 

  177. Krusekopf S, Roots I (2005) St. John’s wort and its constituent hyperforin concordantly regulate expression of genes encoding enzymes involved in basic cellular pathways. Pharmacogenet Genomics 15(11):817–829

    Google Scholar 

  178. Vannini N, Lorusso G, Cammarota R et al (2007) The synthetic oleanane triterpenoid, CDDO-methyl ester, is a potent antiangiogenic agent. Mol Cancer Ther 6(12 Pt 1):3139–3146

    Google Scholar 

  179. Yates MS, Kwak MK, Egner PA et al (2006) Potent protection against aflatoxin-induced tumorigenesis through induction of Nrf2-regulated pathways by the triterpenoid 1-[2-cyano-3-, 12-dioxooleana-1, 9(11)-dien-28-oyl]imidazole. Cancer Res 66(4):2488–2494

    Article  PubMed  CAS  Google Scholar 

  180. Das A, Mantena SR, Kannan A et al (2009) De novo synthesis of estrogen in pregnant uterus is critical for stromal decidualization and angiogenesis. Proc Natl Acad Sci USA 106(30):12542–12547

    Article  PubMed  Google Scholar 

  181. Seo KH, Lee HS, Jung B et al (2004) Estrogen enhances angiogenesis through a pathway involving platelet-activating factor-mediated nuclear factor-kappaB activation. Cancer Res 64(18):6482–6488

    Article  PubMed  CAS  Google Scholar 

  182. Johns A, Freay AD, Fraser W et al (1996) Disruption of estrogen receptor gene prevents 17 beta estradiol-induced angiogenesis in transgenic mice. Endocrinology 137(10):4511–4513

    Article  PubMed  CAS  Google Scholar 

  183. Chen Y, Jin X, Zeng Z et al (2009) Estrogen-replacement therapy promotes angiogenesis after acute myocardial infarction by enhancing SDF-1 and estrogen receptor expression. Microvasc Res 77(2):71–77

    Article  PubMed  CAS  Google Scholar 

  184. Hartman J, Lindberg K, Morani A et al (2006) Estrogen receptor beta inhibits angiogenesis and growth of T47D breast cancer xenografts. Cancer Res 66(23):11207–11213

    Article  PubMed  CAS  Google Scholar 

  185. Beral V (1997) Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative group on hormonal factors in breast cancer. Lancet 350(9084):1047–1059

    Google Scholar 

  186. Fotsis T, Pepper M, Adlercreutz H et al (1993) Genistein, a dietary-derived inhibitor of in vitro angiogenesis. Proc Natl Acad Sci USA 90(7):2690–2694

    Article  PubMed  CAS  Google Scholar 

  187. Ambra R, Rimbach G, de Pascual Teresa S et al (2006) Genistein affects the expression of genes involved in blood pressure regulation and angiogenesis in primary human endothelial cells. Nutr Metab Cardiovasc Dis 16(1):35–43

    Article  PubMed  CAS  Google Scholar 

  188. Piao M, Mori D, Satoh T et al (2006) Inhibition of endothelial cell proliferation, in vitro angiogenesis, and the down-regulation of cell adhesion-related genes by genistein. Combined with a cDNA microarray analysis. Endothelium 13(4):249–266

    Google Scholar 

  189. Li Y, Sarkar FH (2002) Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr 132(12):3623–3631

    PubMed  CAS  Google Scholar 

  190. Suzuki K, Koike H, Matsui H et al (2002) Genistein, a soy isoflavone, induces glutathione peroxidase in the human prostate cancer cell lines LNCaP and PC-3. Int J Cancer 99(6):846–852

    Article  PubMed  CAS  Google Scholar 

  191. Li Y, Kucuk O, Hussain M et al (2006) Antitumor and antimetastatic activities of docetaxel are enhanced by genistein through regulation of osteoprotegerin/receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/MMP-9 signaling in prostate cancer. Cancer Res 66(9):4816–4825

    Article  PubMed  CAS  Google Scholar 

  192. Li Y, Che M, Bhagat S et al (2004) Regulation of gene expression and inhibition of experimental prostate cancer bone metastasis by dietary genistein. Neoplasia 6(4):354–363

    Article  PubMed  CAS  Google Scholar 

  193. Bai J, Sata N, Nagai H et al (2004) Genistein-induced changes in gene expression in Panc 1 cells at physiological concentrations of genistein. Pancreas 29(2):93–98

    Article  PubMed  CAS  Google Scholar 

  194. Takahashi Y, Odbayar TO, Ide T (2009) A comparative analysis of genistein and daidzein in affecting lipid metabolism in rat liver. J Clin Biochem Nutr 44(3):223–230

    Article  PubMed  CAS  Google Scholar 

  195. Zou H, Zhan S, Cao K (2008) Apoptotic activity of genistein on human lung adenocarcinoma SPC-A-1 cells and preliminary exploration of its mechanisms using microarray. Biomed Pharmacother 62(9):583–589

    Article  PubMed  CAS  Google Scholar 

  196. Lee WY, Huang SC, Tzeng CC et al (2007) Alterations of metastasis-related genes identified using an oligonucleotide microarray of genistein-treated HCC1395 breast cancer cells. Nutr Cancer 58(2):239–246

    PubMed  CAS  Google Scholar 

  197. Penza M, Montani C, Romani A et al (2006) Genistein affects adipose tissue deposition in a dose-dependent and gender-specific manner. Endocrinology 147(12):5740–5751

    Article  PubMed  CAS  Google Scholar 

  198. Cooke PS, Selvaraj V, Yellayi S (2006) Genistein, estrogen receptors, and the acquired immune response. J Nutr 136(3):704–708

    PubMed  CAS  Google Scholar 

  199. Wang XJ, Bartolucci-Page E, Fenton SE et al (2006) Altered mammary gland development in male rats exposed to genistein and methoxychlor. Toxicol Sci 91(1):93–103

    Article  PubMed  CAS  Google Scholar 

  200. Lavigne JA, Takahashi Y, Chandramouli GV et al (2008) Concentration-dependent effects of genistein on global gene expression in MCF-7 breast cancer cells: an oligo microarray study. Breast Cancer Res Treat 110(1):85–98

    Article  PubMed  CAS  Google Scholar 

  201. Konstantakopoulos N, Montgomery KG, Chamberlain N et al (2006) Changes in gene expressions elicited by physiological concentrations of genistein on human endometrial cancer cells. Mol Carcinog 45(10):752–763

    Article  PubMed  CAS  Google Scholar 

  202. Igura K, Ohta T, Kuroda Y et al (2001) Resveratrol and quercetin inhibit angiogenesis in vitro. Cancer Lett 171(1):11–16

    Article  PubMed  CAS  Google Scholar 

  203. Gehm BD, McAndrews JM, Chien PY et al (1997) Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc Natl Acad Sci USA 94(25):14138–14143

    Article  PubMed  CAS  Google Scholar 

  204. Scambia G, Ranelletti FO, Benedetti Panici P et al (1991) Quercetin inhibits the growth of a multidrug-resistant estrogen-receptor-negative MCF-7 human breast-cancer cell line expressing type II estrogen-binding sites. Cancer Chemother Pharmacol 28(4):255–258

    PubMed  CAS  Google Scholar 

  205. van der Woude H, Ter Veld MG, Jacobs N et al (2005) The stimulation of cell proliferation by quercetin is mediated by the estrogen receptor. Mol Nutr Food Res 49(8):763–771

    Article  PubMed  CAS  Google Scholar 

  206. Woodall BP, Nystrom A, Iozzo RA et al (2008) Integrin alpha2beta1 is the required receptor for endorepellin angiostatic activity. J Biol Chem 283(4):2335–2343

    Article  PubMed  CAS  Google Scholar 

  207. Ambesi A, Klein RM, Pumiglia KM et al (2005) Anastellin, a fragment of the first type III repeat of fibronectin, inhibits extracellular signal-regulated kinase and causes G(1) arrest in human microvessel endothelial cells. Cancer Res 65(1):148–156

    PubMed  CAS  Google Scholar 

  208. Kalluri R (2002) Discovery of type IV collagen non-collagenous domains as novel integrin ligands and endogenous inhibitors of angiogenesis. Cold Spring Harb Symp Quant Biol 67:255–266

    Article  PubMed  CAS  Google Scholar 

  209. Schiemann WP, Blobe GC, Kalume DE et al (2002) Context-specific effects of fibulin-5 (DANCE/EVEC) on cell proliferation, motility, and invasion. Fibulin-5 is induced by transforming growth factor-beta and affects protein kinase cascades. J Biol Chem 277(30):27367–27377

    Google Scholar 

  210. Greenwood JA, Pallero MA, Theibert AB et al (1998) Thrombospondin signaling of focal adhesion disassembly requires activation of phosphoinositide 3-kinase. J Biol Chem 273(3):1755–1763

    Article  PubMed  CAS  Google Scholar 

  211. Orr AW, Pallero MA, Murphy-Ullrich JE (2002) Thrombospondin stimulates focal adhesion disassembly through Gi- and phosphoinositide 3-kinase-dependent ERK activation. J Biol Chem 277(23):20453–20460

    Article  PubMed  CAS  Google Scholar 

  212. Lopes N, Gregg D, Vasudevan S et al (2003) Thrombospondin 2 regulates cell proliferation induced by Rac1 redox-dependent signaling. Mol Cell Biol 23(15):5401–5408

    Article  PubMed  CAS  Google Scholar 

  213. Sudhakar A, Sugimoto H, Yang C et al (2003) Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci USA 100(8):4766–4771

    Article  PubMed  CAS  Google Scholar 

  214. Leali D, Alessi P, Coltrini D et al (2009) Fibroblast growth factor-2 antagonist and antiangiogenic activity of long-pentraxin 3-derived synthetic peptides. Curr Pharm Des 15(30):3577–3589

    Article  PubMed  CAS  Google Scholar 

  215. Cai J, Jiang WG, Grant MB et al (2006) Pigment epithelium-derived factor inhibits angiogenesis via regulated intracellular proteolysis of vascular endothelial growth factor receptor 1. J Biol Chem 281(6):3604–3613

    Article  PubMed  CAS  Google Scholar 

  216. Yamagishi S, Amano S, Inagaki Y et al (2003) Pigment epithelium-derived factor inhibits leptin-induced angiogenesis by suppressing vascular endothelial growth factor gene expression through anti-oxidative properties. Microvasc Res 65(3):186–190

    Article  PubMed  CAS  Google Scholar 

  217. Liu W, Wu Z, Guan M et al (2009) cDNA microarray analysis of pigment epithelium-derived factor-regulated gene expression profile in prostate carcinoma cells. Int J Urol 16(3):323–328

    Article  PubMed  CAS  Google Scholar 

  218. Chen YH, Wu HL, Chen CK et al (2003) Angiostatin antagonizes the action of VEGF-A in human endothelial cells via two distinct pathways. Biochem Biophys Res Commun 310(3):804–810

    Article  PubMed  CAS  Google Scholar 

  219. Bae JS, Rezaie AR (2009) Mutagenesis studies toward understanding the intracellular signaling mechanism of antithrombin. J Thromb Haemost 7(5):803–810

    Article  PubMed  CAS  Google Scholar 

  220. Jouan V, Canron X, Alemany M et al (1999) Inhibition of in vitro angiogenesis by platelet factor-4-derived peptides and mechanism of action. Blood 94(3):984–993

    PubMed  CAS  Google Scholar 

  221. Brooks PC, Silletti S, von Schalscha TL et al (1998) Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92(3):391–400

    Article  PubMed  CAS  Google Scholar 

  222. Moses MA, Wiederschain D, Wu I et al (1999) Troponin I is present in human cartilage and inhibits angiogenesis. Proc Natl Acad Sci USA 96(6):2645–2650

    Article  PubMed  CAS  Google Scholar 

  223. Feldman L, Rouleau C (2002) Troponin I inhibits capillary endothelial cell proliferation by interaction with the cell’s bFGF receptor. Microvasc Res 63(1):41–49

    Article  PubMed  CAS  Google Scholar 

  224. Blois A, Srebro B, Mandala M et al (2006) The chromogranin A peptide vasostatin-I inhibits gap formation and signal transduction mediated by inflammatory agents in cultured bovine pulmonary and coronary arterial endothelial cells. Regul Pept 135(1–2):78–84

    Article  PubMed  CAS  Google Scholar 

  225. Yang CR, Hsieh SL, Teng CM et al (2004) Soluble decoy receptor 3 induces angiogenesis by neutralization of TL1A, a cytokine belonging to tumor necrosis factor superfamily and exhibiting angiostatic action. Cancer Res 64(3):1122–1129

    Article  PubMed  CAS  Google Scholar 

  226. Wen L, Zhuang L, Luo X et al (2003) TL1A-induced NF-kappaB activation and c-IAP2 production prevent DR3-mediated apoptosis in TF-1 cells. J Biol Chem 278(40):39251–39258

    Article  PubMed  CAS  Google Scholar 

  227. Hou W, Medynski D, Wu S et al (2005) VEGI-192, a new isoform of TNFSF15, specifically eliminates tumor vascular endothelial cells and suppresses tumor growth. Clin Cancer Res 11(15):5595–5602

    Article  PubMed  CAS  Google Scholar 

  228. Watanabe K, Hasegawa Y, Yamashita H et al (2004) Vasohibin as an endothelium-derived negative feedback regulator of angiogenesis. J Clin Invest 114(7):898–907

    PubMed  CAS  Google Scholar 

  229. Otani A, Slike BM, Dorrell MI et al (2002) A fragment of human TrpRS as a potent antagonist of ocular angiogenesis. Proc Natl Acad Sci USA 99(1):178–183

    Article  PubMed  CAS  Google Scholar 

  230. Tzima E, Reader JS, Irani-Tehrani M et al (2005) VE-cadherin links tRNA synthetase cytokine to anti-angiogenic function. J Biol Chem 280(4):2405–2408

    Article  PubMed  CAS  Google Scholar 

  231. Tong Z, Kunnumakkara AB, Wang H et al (2008) Neutrophil gelatinase-associated lipocalin: a novel suppressor of invasion and angiogenesis in pancreatic cancer. Cancer Res 68(15):6100–6108

    Article  PubMed  CAS  Google Scholar 

  232. Tsuruoka N, Sugiyama M, Tawaragi Y et al (1988) Inhibition of in vitro angiogenesis by lymphotoxin and interferon-gamma. Biochem Biophys Res Commun 155(1):429–435

    Article  PubMed  CAS  Google Scholar 

  233. Strieter RM, Kunkel SL, Arenberg DA et al (1995) Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochem Biophys Res Commun 210(1):51–57

    Article  PubMed  CAS  Google Scholar 

  234. Koike F, Satoh J, Miyake S et al (2003) Microarray analysis identifies interferon beta-regulated genes in multiple sclerosis. J Neuroimmunol 139(1–2):109–118

    Article  PubMed  CAS  Google Scholar 

  235. Huang T, Tu K, Shyr Y et al (2008) The prediction of interferon treatment effects based on time series microarray gene expression profiles. J Transl Med 6:44

    Article  PubMed  CAS  Google Scholar 

  236. Chen Y, Antoniou E, Liu Z et al (2007) A microarray analysis for genes regulated by interferon-tau in ovine luminal epithelial cells. Reproduction 134(1):123–135

    Article  PubMed  CAS  Google Scholar 

  237. Zou W, Kim JH, Handidu A et al (2007) Microarray analysis reveals that Type I interferon strongly increases the expression of immune-response related genes in Ubp43 (Usp18) deficient macrophages. Biochem Biophys Res Commun 356(1):193–199

    Article  PubMed  CAS  Google Scholar 

  238. Crow MK, Kirou KA, Wohlgemuth J (2003) Microarray analysis of interferon-regulated genes in SLE. Autoimmunity 36(8):481–490

    Article  PubMed  CAS  Google Scholar 

  239. Cozzolino F, Torcia M, Aldinucci D et al (1990) Interleukin 1 is an autocrine regulator of human endothelial cell growth. Proc Natl Acad Sci USA 87(17):6487–6491

    Article  PubMed  CAS  Google Scholar 

  240. Tamura T, Nakanishi T, Kimura Y et al (1996) Nitric oxide mediates interleukin-1-induced matrix degradation and basic fibroblast growth factor release in cultured rabbit articular chondrocytes: a possible mechanism of pathological neovascularization in arthritis. Endocrinology 137(9):3729–3737

    Article  PubMed  CAS  Google Scholar 

  241. Williams MR, Kataoka N, Sakurai Y et al (2008) Gene expression of endothelial cells due to interleukin-1 beta stimulation and neutrophil transmigration. Endothelium 15(1):73–165

    Article  PubMed  CAS  Google Scholar 

  242. Zhao B, Stavchansky SA, Bowden RA et al (2003) Effect of interleukin-1beta and tumor necrosis factor-alpha on gene expression in human endothelial cells. Am J Physiol Cell Physiol 284(6):C1577–C1583

    PubMed  CAS  Google Scholar 

  243. Elaraj DM, Weinreich DM, Varghese S et al (2006) The role of interleukin 1 in growth and metastasis of human cancer xenografts. Clin Cancer Res 12(4):1088–1096

    Article  PubMed  CAS  Google Scholar 

  244. Shi J, Schmitt-Talbot E, DiMattia DA et al (2004) The differential effects of IL-1 and TNF-alpha on proinflammatory cytokine and matrix metalloproteinase expression in human chondrosarcoma cells. Inflamm Res 53(8):377–389

    Article  PubMed  CAS  Google Scholar 

  245. Berchtold LA, Larsen CM, Vaag A et al (2009) IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes. Eur Cytokine Netw 20(2):81–87

    PubMed  CAS  Google Scholar 

  246. Ching S, Zhang H, Chen Q et al (2007) Differential expression of extracellular matrix and adhesion molecule genes in the brain of juvenile versus adult mice in responses to intracerebroventricular administration of IL-1. Neuroimmunomodulation 14(1):46–56

    Article  PubMed  CAS  Google Scholar 

  247. Volpert OV, Fong T, Koch AE et al (1998) Inhibition of angiogenesis by interleukin 4. J Exp Med 188(6):1039–1046

    Article  PubMed  CAS  Google Scholar 

  248. Schnyder B, Lugli S, Feng N et al (1996) Interleukin-4 (IL-4) and IL-13 bind to a shared heterodimeric complex on endothelial cells mediating vascular cell adhesion molecule-1 induction in the absence of the common gamma chain. Blood 87(10):4286–4295

    PubMed  CAS  Google Scholar 

  249. Matsumoto K, Ohi H, Kanmatsuse K (1999) Interleukin-4 cooperates with interleukin-10 to inhibit vascular permeability factor release by peripheral blood mononuclear cells from patients with minimal-change nephrotic syndrome. Am J Nephrol 19(1):21–27

    Article  PubMed  CAS  Google Scholar 

  250. Chaitidis P, O’Donnell V, Kuban RJ et al (2005) Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13. Cytokine 30(6):366–377

    Article  PubMed  CAS  Google Scholar 

  251. Lee YW, Eum SY, Chen KC et al (2004) Gene expression profile in interleukin-4-stimulated human vascular endothelial cells. Mol Med 10(1–6):19–27

    PubMed  CAS  Google Scholar 

  252. Coughlin CM, Salhany KE, Gee MS et al (1998) Tumor cell responses to IFNgamma affect tumorigenicity and response to IL-12 therapy and antiangiogenesis. Immunity 9(1):25–34

    Article  PubMed  CAS  Google Scholar 

  253. Dias S, Boyd R, Balkwill F (1998) IL-12 regulates VEGF and MMPs in a murine breast cancer model. Int J Cancer 78(3):361–365

    Article  PubMed  CAS  Google Scholar 

  254. Renneson J, Dutta B, Goriely S et al (2009) IL-12 and type I IFN response of neonatal myeloid DC to human cytomegalovirus infection. Eur J Immunol 39(10):2789–2799

    Article  PubMed  CAS  Google Scholar 

  255. Shi Y, Zou M, Baitei EY et al (2008) Cannabinoid 2 receptor induction by IL-12 and its potential as a therapeutic target for the treatment of anaplastic thyroid carcinoma. Cancer Gene Ther 15(2):101–107

    Article  PubMed  CAS  Google Scholar 

  256. Hoey T, Zhang S, Schmidt N et al (2003) Distinct requirements for the naturally occurring splice forms Stat4alpha and Stat4beta in IL-12 responses. EMBO J 22(16):4237–4248

    Article  PubMed  CAS  Google Scholar 

  257. Hodge DL, Schill WB, Wang JM et al (2002) IL-2 and IL-12 alter NK cell responsiveness to IFN-gamma-inducible protein 10 by down-regulating CXCR3 expression. J Immunol 168(12):6090–6098

    PubMed  CAS  Google Scholar 

  258. Cao R, Farnebo J, Kurimoto M et al (1999) Interleukin-18 acts as an angiogenesis and tumor suppressor. FASEB J 13(15):2195–2202

    PubMed  CAS  Google Scholar 

  259. Kim J, Kim C, Kim TS et al (2006) IL-18 enhances thrombospondin-1 production in human gastric cancer via JNK pathway. Biochem Biophys Res Commun 344(4):1284–1289

    Article  PubMed  CAS  Google Scholar 

  260. Coma G, Pena R, Blanco J et al (2006) Treatment of monocytes with interleukin (IL)-12 plus IL-18 stimulates survival, differentiation and the production of CXC chemokine ligands (CXCL)8, CXCL9 and CXCL10. Clin Exp Immunol 145(3):535–544

    Article  PubMed  CAS  Google Scholar 

  261. Wiener Z, Pocza P, Racz M et al (2008) IL-18 induces a marked gene expression profile change and increased Ccl1 (I-309) production in mouse mucosal mast cell homologs. Int Immunol 20(12):1565–1573

    Article  PubMed  CAS  Google Scholar 

  262. Seo M, Park M, Yook Y et al (2008) IL-18 gene expression pattern in exogenously treated AML cells. BMB Rep 41(6):461–465

    PubMed  CAS  Google Scholar 

  263. Saha S, Gonzalez J, Rosenfeld G et al (2009) Prolactin alters the mechanisms of B cell tolerance induction. Arthritis Rheum 60(6):1743–1752

    Article  PubMed  CAS  Google Scholar 

  264. Charoenphandhu N, Wongdee K, Teerapornpuntakit J et al (2008) Transcriptome responses of duodenal epithelial cells to prolactin in pituitary-grafted rats. Mol Cell Endocrinol 296(1–2):41–52

    Article  PubMed  CAS  Google Scholar 

  265. Tomblyn S, Langenheim JF, Jacquemart IC et al (2005) The role of human prolactin and its antagonist, G129R, in mammary gland development and DMBA-initiated tumorigenesis in transgenic mice. Int J Oncol 27(5):1381–1389

    PubMed  CAS  Google Scholar 

  266. Gass S, Harris J, Ormandy C et al (2003) Using gene expression arrays to elucidate transcriptional profiles underlying prolactin function. J Mammary Gland Biol Neoplasia 8(3):269–285

    Article  PubMed  Google Scholar 

  267. Dillner K, Kindblom J, Flores-Morales A et al (2003) Gene expression analysis of prostate hyperplasia in mice overexpressing the prolactin gene specifically in the prostate. Endocrinology 144(11):4955–4966

    Article  PubMed  CAS  Google Scholar 

  268. Dillner K, Kindblom J, Flores-Morales A et al (2002) Molecular characterization of prostate hyperplasia in prolactin-transgenic mice by using cDNA representational difference analysis. Prostate 52(2):139–149

    Article  PubMed  CAS  Google Scholar 

  269. Hou Z, Bailey JP, Vomachka AJ et al (2000) Glycosylation-dependent cell adhesion molecule 1 (GlyCAM 1) is induced by prolactin and suppressed by progesterone in mammary epithelium. Endocrinology 141(11):4278–4283

    Article  PubMed  CAS  Google Scholar 

  270. Quan H, Xu Y, Lou L (2008) p38 MAPK, but not ERK1/2, is critically involved in the cytotoxicity of the novel vascular disrupting agent combretastatin A4. Int J Cancer 122(8):1730–1737

    Article  PubMed  CAS  Google Scholar 

  271. Wang YQ, Luk JM, Chu AC et al (2006) TNP-470 blockage of VEGF synthesis is dependent on MAPK/COX-2 signaling pathway in PDGF-BB-activated hepatic stellate cells. Biochem Biophys Res Commun 341(1):239–244

    Article  PubMed  CAS  Google Scholar 

  272. Chen GJ, Weylie B, Hu C et al (2007) FGFR1/PI3 K/AKT signaling pathway is a novel target for antiangiogenic effects of the cancer drug fumagillin (TNP-470). J Cell Biochem 101(6):1492–1504

    Article  PubMed  CAS  Google Scholar 

  273. Koseki Y, Zava DT, Chamness GC et al (1977) Estrogen receptor translocation and replenishment by the antiestrogen tamoxifen. Endocrinology 101(4):1104–1110

    Article  PubMed  CAS  Google Scholar 

  274. Inai T, Mancuso M, Hashizume H et al (2004) Inhibition of vascular endothelial growth factor (VEGF) signaling in cancer causes loss of endothelial fenestrations, regression of tumor vessels, and appearance of basement membrane ghosts. Am J Pathol 165(1):35–52

    PubMed  CAS  Google Scholar 

  275. Nghiemphu PL, Liu W, Lee Y et al (2009) Bevacizumab and chemotherapy for recurrent glioblastoma: a single-institution experience. Neurology 72(14):1217–1222

    Article  PubMed  CAS  Google Scholar 

  276. Maier AK, Kociok N, Zahn G et al (2007) Modulation of hypoxia-induced neovascularization by JSM6427, an integrin alpha5beta1 inhibiting molecule. Curr Eye Res 32(9):801–812

    Article  PubMed  CAS  Google Scholar 

  277. Strumberg D (2005) Preclinical and clinical development of the oral multikinase inhibitor sorafenib in cancer treatment. Drugs Today (Barc) 41(12):773–784

    Article  CAS  Google Scholar 

  278. Gragoudas ES, Adamis AP, Cunningham ET Jr et al (2004) Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 351(27):2805–2816

    Article  PubMed  CAS  Google Scholar 

  279. Banerjee S, Zvelebil M, Furet P et al (2009) The vascular endothelial growth factor receptor inhibitor PTK787/ZK222584 inhibits aromatase. Cancer Res 69(11):4716–4723

    Article  PubMed  CAS  Google Scholar 

  280. Rosenfeld PJ, Brown DM, Heier JS et al (2006) Ranibizumab for neovascular age-related macular degeneration. N Engl J Med 355(14):1419–1431

    Article  PubMed  CAS  Google Scholar 

  281. Hosoi H, Dilling MB, Shikata T et al (1999) Rapamycin causes poorly reversible inhibition of mTOR and induces p53-independent apoptosis in human rhabdomyosarcoma cells. Cancer Res 59(4):886–894

    PubMed  CAS  Google Scholar 

  282. Preiss T, Baron-Benhamou J, Ansorge W et al (2003) Homodirectional changes in transcriptome composition and mRNA translation induced by rapamycin and heat shock. Nat Struct Biol 10(12):1039–1047

    Article  PubMed  CAS  Google Scholar 

  283. Palanki MS, Akiyama H, Campochiaro P et al (2008) Development of prodrug 4-chloro-3-(5-methyl-3-{[4-(2-pyrrolidin-1-ylethoxy)phenyl]amino}-1, 2, 4-be nzotriazin-7-yl)phenyl benzoate (TG100801): a topically administered therapeutic candidate in clinical trials for the treatment of age-related macular degeneration. J Med Chem 51(6):1546–1559

    Article  PubMed  CAS  Google Scholar 

  284. Fabbrini M, Trachsel E, Soldani P et al (2006) Selective occlusion of tumor blood vessels by targeted delivery of an antibody-photosensitizer conjugate. Int J Cancer 118(7):1805–1813

    Article  PubMed  CAS  Google Scholar 

  285. Billerey-Larmonier C, Uno JK, Larmonier N et al (2008) Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. Inflamm Bowel Dis 14(6):780–793

    Article  PubMed  Google Scholar 

  286. Nguyen KT, Shaikh N, Shukla KP et al (2004) Molecular responses of vascular smooth muscle cells and phagocytes to curcumin-eluting bioresorbable stent materials. Biomaterials 25(23):5333–5346

    Article  PubMed  CAS  Google Scholar 

  287. Chen HW, Yu SL, Chen JJ et al (2004) Anti-invasive gene expression profile of curcumin in lung adenocarcinoma based on a high throughput microarray analysis. Mol Pharmacol 65(1):99–110

    Article  PubMed  CAS  Google Scholar 

  288. Mariadason JM, Corner GA, Augenlicht LH (2000) Genetic reprogramming in pathways of colonic cell maturation induced by short chain fatty acids: comparison with trichostatin A, sulindac, and curcumin and implications for chemoprevention of colon cancer. Cancer Res 60(16):4561–4572

    PubMed  CAS  Google Scholar 

  289. Papoutsi Z, Kassi E, Chinou I et al (2008) Walnut extract (Juglans regia L.) and its component ellagic acid exhibit anti-inflammatory activity in human aorta endothelial cells and osteoblastic activity in the cell line KS483. Br J Nutr 99(4):715–722

    Google Scholar 

  290. Fassina G, Vene R, Morini M et al (2004) Mechanisms of inhibition of tumor angiogenesis and vascular tumor growth by epigallocatechin-3-gallate. Clin Cancer Res 10(14):4865–4873

    Article  PubMed  CAS  Google Scholar 

  291. Garbisa S, Sartor L, Biggin S et al (2001) Tumor gelatinases and invasion inhibited by the green tea flavanol epigallocatechin-3-gallate. Cancer 91(4):822–832

    Article  PubMed  CAS  Google Scholar 

  292. Vittal R, Selvanayagam ZE, Sun Y et al (2004) Gene expression changes induced by green tea polyphenol (-)-epigallocatechin-3-gallate in human bronchial epithelial 21BES cells analyzed by DNA microarray. Mol Cancer Ther 3(9):1091–1099

    PubMed  CAS  Google Scholar 

  293. Weinreb O, Mandel S, Youdim MB (2003) Gene and protein expression profiles of anti- and pro-apoptotic actions of dopamine, R-apomorphine, green tea polyphenol (-)-epigallocatechine-3-gallate, and melatonin. Ann NY Acad Sci 993:351–61 (discussion 87–93)

    Google Scholar 

  294. Wang SI, Mukhtar H (2002) Gene expression profile in human prostate LNCaP cancer cells by (–) epigallocatechin-3-gallate. Cancer Lett 182(1):43–51

    Article  PubMed  CAS  Google Scholar 

  295. Schempp CM, Kiss J, Kirkin V et al (2005) Hyperforin acts as an angiogenesis inhibitor. Planta Med 71(11):999–1004

    Article  PubMed  CAS  Google Scholar 

  296. Martinez-Poveda B, Quesada AR, Medina MA (2005) Hyperforin, a bio-active compound of St. John’s Wort, is a new inhibitor of angiogenesis targeting several key steps of the process. Int J Cancer 117(5):775–780

    Google Scholar 

  297. Quiney C, Billard C, Mirshahi P et al (2006) Hyperforin inhibits MMP-9 secretion by B-CLL cells and microtubule formation by endothelial cells. Leukemia 20(4):583–589

    Article  PubMed  CAS  Google Scholar 

  298. Rakshit S, Bagchi J, Mandal L et al (2009) N-acetyl cysteine enhances imatinib-induced apoptosis of Bcr-Abl + cells by endothelial nitric oxide synthase-mediated production of nitric oxide. Apoptosis 14(3):298–308

    Article  PubMed  CAS  Google Scholar 

  299. Yi T, Cho SG, Yi Z et al (2008) Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol Cancer Ther 7(7):1789–1796

    Article  PubMed  CAS  Google Scholar 

  300. Su SJ, Yeh TM, Chuang WJ et al (2005) The novel targets for anti-angiogenesis of genistein on human cancer cells. Biochem Pharmacol 69(2):307–318

    Article  PubMed  CAS  Google Scholar 

  301. Wang TT, Sathyamoorthy N, Phang JM (1996) Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 17(2):271–275

    Article  PubMed  Google Scholar 

  302. Li Y, Sarkar FH (2002) Down-regulation of invasion and angiogenesis-related genes identified by cDNA microarray analysis of PC3 prostate cancer cells treated with genistein. Cancer Lett 186(2):157–164

    Article  PubMed  CAS  Google Scholar 

  303. Regenbrecht CR, Jung M, Lehrach H et al (2008) The molecular basis of genistein-induced mitotic arrest, exit of self-renewal in embryonal carcinoma, primary cancer cell lines. BMC Med Genomics 1:49

    Article  PubMed  CAS  Google Scholar 

  304. Pie JE, Park JH, Park YH et al (2006) Effect of genistein on the expression of bone metabolism genes in ovariectomized mice using a cDNA microarray. J Nutr Biochem 17(3):157–164

    Article  PubMed  CAS  Google Scholar 

  305. Takahashi Y, Lavigne JA, Hursting SD et al (2004) Using DNA microarray analyses to elucidate the effects of genistein in androgen-responsive prostate cancer cells: identification of novel targets. Mol Carcinog 41(2):108–119

    Article  PubMed  CAS  Google Scholar 

  306. Adachi T, Ono Y, Koh KB et al (2004) Long-term alteration of gene expression without morphological change in testis after neonatal exposure to genistein in mice: toxicogenomic analysis using cDNA microarray. Food Chem Toxicol 42(3):445–452

    Article  PubMed  CAS  Google Scholar 

  307. Chen WF, Huang MH, Tzang CH et al (2003) Inhibitory actions of genistein in human breast cancer (MCF-7) cells. Biochim Biophys Acta 1638(2):187–196

    PubMed  CAS  Google Scholar 

  308. Naciff JM, Jump ML, Torontali SM et al (2002) Gene expression profile induced by 17alpha-ethynyl estradiol, bisphenol A, and genistein in the developing female reproductive system of the rat. Toxicol Sci 68(1):184–199

    Article  PubMed  CAS  Google Scholar 

  309. Chen CC, Shieh B, Jin YT et al (2001) Microarray profiling of gene expression patterns in bladder tumor cells treated with genistein. J Biomed Sci 8(2):214–222

    Article  PubMed  CAS  Google Scholar 

  310. Kobori M, Masumoto S, Akimoto Y et al (2009) Dietary quercetin alleviates diabetic symptoms and reduces streptozotocin-induced disturbance of hepatic gene expression in mice. Mol Nutr Food Res 53(7):859–868

    Article  PubMed  CAS  Google Scholar 

  311. Natsume Y, Kadota K, Satsu H et al (2009) Effect of quercetin on the gene expression profile of the mouse intestine. Biosci Biotechnol Biochem 73(3):722–725

    Article  PubMed  CAS  Google Scholar 

  312. Odbayar TO, Kimura T, Tsushida T et al (2009) Isoenzyme-specific up-regulation of glutathione transferase and aldo-keto reductase mRNA expression by dietary quercetin in rat liver. Mol Cell Biochem 325(1–2):121–130

    Article  PubMed  CAS  Google Scholar 

  313. Soundararajan R, Wishart AD, Rupasinghe HP et al (2008) Quercetin 3-glucoside protects neuroblastoma (SH-SY5Y) cells in vitro against oxidative damage by inducing sterol regulatory element-binding protein-2-mediated cholesterol biosynthesis. J Biol Chem 283(4):2231–2245

    Article  PubMed  CAS  Google Scholar 

  314. Murtaza I, Marra G, Schlapbach R et al (2006) A preliminary investigation demonstrating the effect of quercetin on the expression of genes related to cell-cycle arrest, apoptosis and xenobiotic metabolism in human CO115 colon-adenocarcinoma cells using DNA microarray. Biotechnol Appl Biochem 45(Pt 1):29–36

    PubMed  CAS  Google Scholar 

  315. Whyte L, Huang YY, Torres K et al (2007) Molecular mechanisms of resveratrol action in lung cancer cells using dual protein and microarray analyses. Cancer Res 67(24):12007–12017

    Article  PubMed  CAS  Google Scholar 

  316. Golkar L, Ding XZ, Ujiki MB et al (2007) Resveratrol inhibits pancreatic cancer cell proliferation through transcriptional induction of macrophage inhibitory cytokine-1. J Surg Res 138(2):163–169

    Article  PubMed  CAS  Google Scholar 

  317. Jones SB, DePrimo SE, Whitfield ML et al (2005) Resveratrol-induced gene expression profiles in human prostate cancer cells. Cancer Epidemiol Biomarkers Prev 14(3):596–604

    Article  PubMed  CAS  Google Scholar 

  318. Yang SH, Kim JS, Oh TJ et al (2003) Genome-scale analysis of resveratrol-induced gene expression profile in human ovarian cancer cells using a cDNA microarray. Int J Oncol 22(4):741–750

    PubMed  CAS  Google Scholar 

  319. Narayanan BA, Narayanan NK, Re GG et al (2003) Differential expression of genes induced by resveratrol in LNCaP cells: P53-mediated molecular targets. Int J Cancer 104(2):204–212

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been made possible by contributions from the Italian Health Ministry to UP, the Regione Liguria to UP, the Compagnia San Paolo di Torino to UP and AA, the AIRC (Associazione Italiana per la Ricerca sul Cancro; to DN and AA), the Ministero della Salute (to AA and DN), and the Università degli Studi dell’Insubria (to DN). AA is the recipient of a Berlucchi Award for Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Noonan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albini, A., Indraccolo, S., Noonan, D.M. et al. Functional genomics of endothelial cells treated with anti-angiogenic or angiopreventive drugs. Clin Exp Metastasis 27, 419–439 (2010). https://doi.org/10.1007/s10585-010-9312-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-010-9312-5

Keywords

Navigation