Skip to main content

Advertisement

Log in

Venomous snakes and climate change: ophidism as a dynamic problem

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Snakebite envenoming is an important public health problem worldwide and addressing this issue has turned into a challenge for applied science. In this sense, the study of the distributional patterns of problematic snakes is central in terms of public health. Global Climate Change is affecting the distributional ranges of snakes, so that decisions regarding treatment of ophidism (poisoning by snake venom) may also change spatially and/or temporally. Here, we assessed suitable climate spaces at present conditions and estimated potential future changes in the distributions of the five southernmost venomous snakes, responsible for almost 99 % of accidents in Argentina, by implementing an ensemble of forecasts between different algorithms and scenarios for 2030 and 2080. Present suitable climate spaces showed high concordance with known distribution of the species. Future projections show moderate “north to south” displacements of the snakes’ suitable climate spaces, implying potential increments of suitable spaces in human populated areas in Argentina. Our results suggest the necessity of considering ophidism as a dynamic problem. In this regard, the analyses implemented here are useful tools in improving the assessment of snakebite envenoming in light of global climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: Criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–7

    Article  Google Scholar 

  • Araújo MB, Thuiller W, Pearson RG (2006) Climate warming and the decline of amphibians and reptiles in Europe. J Biogeogr 33:1712–1728

    Article  Google Scholar 

  • Araújo MB, Rahbek C (2007) Conserving biodiversity in a world of conflicts. J Biogeogr 34:199–200

    Article  Google Scholar 

  • Bastos EGDM, De Araújo AFB, Silva HR (2005) Records of the rattlesnakes Crotalus durissus terrificus (Laurenti) (Serpentes, Viperidae) in the State of Rio de Janeiro, Brazil: A possible case of invasion facilitated by defororestation. Rev Bras Zool 22:812–815

    Article  Google Scholar 

  • Campbell JA, Lamar WW (2004) The venomous reptiles of the Western Hemisphere. Comstock, Ithaca

    Google Scholar 

  • Carrasco PA, Harvey MB, Saravia AM (2009) The rare Andean pitviper Rhinocerophis jonathani (Serpentes: Viperidae). Zootaxa 2283:1–15

    Google Scholar 

  • Carrasco PA, Leynaud GC, Scrocchi GJ (2010) Redescription of the southernmost snake species, Bothrops ammodytoides (Serpentes: Viperidae: Crotalinae). Amphibia-Reptilia 31:323–338

    Article  Google Scholar 

  • Carrasco PA, Mattoni CI, Leynaud GC, Scrocchi GJ (2012) Morphology, phylogeny and taxonomy of South American bothropoid pitvipers (Serpentes, Viperidae). Zool Scr 41:109–124

    Article  Google Scholar 

  • CIESIN, Columbia University, IFPRI, The World Bank, CIAT (2011) Global rural–urban mapping project, version 1 (GRUMPv1): Population count grid. NASA Socioeconomic Data and Applications Center (SEDAC), Palisades

    Google Scholar 

  • Cruz LS, Vargas R, Lopes AA (2009) Snakebite envenomation and death in the developing world. Ethnic dis 19:42–46

    Google Scholar 

  • Da Silva JN, Sites JW (2012) Revision of the Micrurus frontalis Complex (Serpentes: Elapidae). Herpetol Monogr 13:142–194

    Article  Google Scholar 

  • de Roodt AR (2009) Ofidios venenosos y sus venenos. In: Montero R, Autino A (eds) Sistemática y Filogenia de los vertebrados, 2nd edn. Tucumán, Argentina, pp 233–241

    Google Scholar 

  • Di Cola V, Chiaraviglio M (2011) Establishing species’ environmental requirements to understand how the southernmost species of South American pitvipers (Bothrops, Viperidae) are distributed: A niche-based modelling approach. Austral Ecol 36:90–98

    Article  Google Scholar 

  • Diniz-Filho JAF, Mauricio Bini L, Fernando Rangel T, Loyola RD, Hof C et al (2009) Partitioning and mapping uncertainties in ensembles of forecasts of species turnover under climate change. Ecography 32:897–906

    Article  Google Scholar 

  • Dobrovolski R, Diniz-Filho JAF, Loyola RD, De Marco JP (2011) Agricultural expansion and the fate of global conservation priorities. Biodivers Conserv 20:2445–2459

    Article  Google Scholar 

  • Dokmetjian JC, Del Canto S, Vinzón S, De Jiménez Bonino MB (2009) Biochemical characterization of the Micrurus pyrrhocryptus venom. Toxicon 53:375–382

    Article  Google Scholar 

  • ESA (European Space Agency) (2010) Globcover 2009. Products Description and Validation Report.

  • Faleiro FV, Machado RB, Loyola RD (2013) Defining spatial conservation priorities in the face of land-use and climate change. Biol Conserv 158:248–257

    Article  Google Scholar 

  • Franklin J (2009) Mapping species distributions. Cambridge University Press, New York

    Google Scholar 

  • Giraudo AR, Arzamendia V, Bellini GP, Bessa CA, Cinthia C et al (2012) Categorización del estado de conservación de las Serpientes de la República Argentina. Cuad Herp 26:303–326

    Google Scholar 

  • Gutiérrez JM (2012) Improving antivenom availability and accessibility: Science, technology, and beyond. Toxicon 60:1–12

    Article  Google Scholar 

  • Gutiérrez JM, Williams D, Fan HW, Warrell D (2010) Snakebite envenoming from a global perspective: Towards an integrated approach. Toxicon 56:1223–1235

    Article  Google Scholar 

  • Hansson E, Sasa M, Mattisson K, Robles A, Gutiérrez JM (2013) Using geographical information systems to identify populations in need of improved accessibility to antivenom treatment for snakebite envenoming in Costa Rica. PLoS Neglect Trop D e2009

  • Harrison RA, Wüster W, Theakston RDG (2003) The conserved structure of snake venom toxins confers extensive immunological cross-reactivity to toxin-specific antibody. Toxicon 41:441–449

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoss SK, Guyer C, Smith LL, Gordon W (2010) Multiscale influences of landscape composition and configuration on the spatial ecology of eastern diamond-backed rattlesnakes (Crotalus adamanteus). J Herpetol 44:110–123

    Article  Google Scholar 

  • IPCC (2007) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change, 2007. Structure AR4:996

    Google Scholar 

  • IUCN (2013) IUCN red list of threatened species. Version 2013:1

    Google Scholar 

  • Joyner TA, Lukhnova L, Pazilov Y, Temiralyeva G, Hugh-Jones ME et al (2010) Modeling the potential distribution of Bacillus anthracis under multiple climate change scenarios for Kazakhstan. PloS one 5:e9596

    Article  Google Scholar 

  • Kasturiratne A, Wickremasinghe AR, De Silva N, Gunawardena NK, Pathmeswaran A et al (2008) The global burden of snakebite: A literature analysis and modeling based on regional estimates of envenoming and deaths. PLoS Med 5:1591–1604

    Google Scholar 

  • Lafferty KD (2009) The ecology of climate change and infectious diseases. Ecology 90:888–900

    Article  Google Scholar 

  • Lemes P, Loyola RD (2013) Accommodating species climate-forced dispersal and uncertainties in spatial conservation planning. PloS one 8:e54323

    Article  Google Scholar 

  • Leynaud GC, Reati GJ (2009) Identificación de las zonas de riesgo ofídico en Córdoba, Argentina, mediante el programa SIGEpi. Pan Am J Public Health 26:64–69

    Article  Google Scholar 

  • Leynaud GC, Bucher EH (2005) Restoration of degraded Chaco woodlands: Effects on reptile assemblages. For Ecol Manag 213:384–390

    Article  Google Scholar 

  • Loyola RD, Lemes P, Faleiro FV, Trindade-Filho J, Machado RB (2012) Severe loss of suitable climatic conditions for marsupial species in Brazil: Challenges and opportunities for conservation. PloS one 7:e46257

    Article  Google Scholar 

  • Macartey JM, Gregory PT, Larsen KW (1988) A tabular survey of data movements and home range. J Herpetol 22:61–73

    Article  Google Scholar 

  • Martins M, Araujo MS, Sawaya RJ, Nunes R (2001) Diversity and evolution of macrohabitat use, body size and morphology in a monophyletic group of Neotropical pitviper (Bothrops). J Zool 254:529–538

    Article  Google Scholar 

  • Minoli I, Alvarez DJ, Avila LJ (2011) New records and geographic distribution maps for Bothropoides diporus Cope, 1862 (Reptilia: Viperidae). Check List 7:608–609

    Google Scholar 

  • Morrone JJ (2006) Biogeographic areas and transition zones of Latin America and the Caribean islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Rev Entomol 51:467–494

    Article  Google Scholar 

  • Nori J, Akmentins MS, Ghirardi R, Frutos N, Leynaud GC (2011a) American bullfrog invasion in Argentina: Where should we take urgent measures? Biodivers Conserv 20:1125–1132

    Article  Google Scholar 

  • Nori J, Urbina-Cardona JN, Loyola RD, Lescano JN, Leynaud GC (2011b) Climate change and American bullfrog invasion: What could we expect in South America? PloS one 6:e25718

    Article  Google Scholar 

  • Nori J, Díaz-Gomez J, Leynaud GC (2011c) Biogeographic regions of Central Argentina based on snake distribution: Evaluating two different methodological approaches. J Nat Hist 45:1005–1020

    Article  Google Scholar 

  • Nori J, Lescano JN, Illoldi-Rangel P, Frutos N, Cabrera MR et al (2013) The conflict between agricultural expansion and priority conservation areas: Making the right decisions before it is too late. Biol Conserv 159:507–513

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Piñeiro R, Fuertes Aguilar J, Munt DD, Nieto Feliner G (2007) Ecology matters: Atlantic-Mediterranean disjunction in the sand-dune shrub Armeria pungens (Plumbaginaceae). Mol Ecol 16:2155–2171

    Article  Google Scholar 

  • Porcasi X, Rotela CH, Introini MV, Frutos N, Lanfri S et al (2012) An operative dengue risk stratification system in Argentina based on geospatial technology. Geospat Health 6:31–42

    Google Scholar 

  • Queiroz GP, Pessoa LA, Portaro FCV, Furtado MDFD, Tambourgi DV (2008) Interspecific variation in venom composition and toxicity of Brazilian snakes from Bothrops genus. Toxicon 52:842–851

    Article  Google Scholar 

  • Reading CJ, Luiselli LM, Akani GC et al (2010) Are snake populations in widespread decline? Biol Lett 6:777–80

    Article  Google Scholar 

  • Rodda GH, Jarnevich CS, Reed RN (2011) Challenges in identifying sites climatically matched to the native ranges of animal invaders. PLoS one 6:e14670

    Article  Google Scholar 

  • Sasa M, Wasko DK, Lamar WW (2009) Natural history of the terciopelo Bothrops asper (Serpentes: Viperidae) in Costa Rica. Toxicon 54:904–22

    Article  Google Scholar 

  • Saupe EE, Papes M, Selden PA, Vetter RS (2011) Tracking a medically important spider: Climate change, ecological niche modeling, and the brown recluse (Loxosceles reclusa). PloS one 6:e17731

    Article  Google Scholar 

  • Schölkopf B, Platt JC, Shawe-Taylor JS, Smola AJ, Williamson RC (2001) Estimating the support of a high-dimensional distribution. Neural Comput 13:1443–1471

    Article  Google Scholar 

  • Sinervo B, Méndez de la Cruz F, Miles DB et al (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–8

    Article  Google Scholar 

  • Ureta C, Martínez-Meyer E, Perales HR, Álvarez-Buylla ER (2012) Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Global Change Biol 18:1073–1082

    Article  Google Scholar 

  • Wüster W, Peppin L, Pook CE, Walker DE (2008) A nesting of vipers: Phylogeny and historical biogeography of the Viperidae (Squamata: Serpentes). Mol Phylogenet Evol 49:445–59

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to J. Aparicio, L. Gonzales, H. Zaher, S. Kretzschmar, J. Williams, and J. Faivovich for generously providing access to the herpetological collections. We also thank G. Scrocchi, J. Lescano and N. Frutos who discussed several important aspects of this study, three anonymous reviewers who made important suggestions that greatly improved the ms, and Maria Eugenia Periago for improvements in the English version of the manuscript. JN is a PhD student at the Doctorado en Ciencias Biológicas, Universidad Nacional de Córdoba. PAC is a postdoctoral fellow (CONICET-SECyT), and GCL is a staff researcher at CONICET (Argentina). The authors’ research was supported by MINCyT–PID 2010 (project #000113/2011) and SECYT–UNC (project # 162/12). Land-Cover data set was developed for the European Space Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Nori.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl. Table 1

Georeferenced data records implemented to create the models. (XLSX 25 kb)

Suppl. Fig. 1

Maps with records of the entire range of five snake species (a) Bothrops alternatus (b) Bothrops ammodytoides (c) Bothrops diporus (d) Crotalus durissus terrificus (e) Micrurus pyrrhocryptus (JPEG 298 kb)

High resolution image (TIFF 11897 kb)

Suppl. Fig. 2

Map showing antrhopized and non-anthropized areas in the continent, overlapped with the suitable climatic spaces at current condition, 2030 and 2080 for each snake species (a) Bothrops alternatus (b) Bothrops ammodytoides (c) Bothrops diporus (d) Crotalus durissus terrificus (e) Micrurus pyrrhocryptus (JPEG 267 kb)

High resolution image (TIFF 11938 kb)

Appendix

Appendix

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nori, J., Carrasco, P.A. & Leynaud, G.C. Venomous snakes and climate change: ophidism as a dynamic problem. Climatic Change 122, 67–80 (2014). https://doi.org/10.1007/s10584-013-1019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-013-1019-6

Keywords

Navigation