Skip to main content

Advertisement

Log in

Agricultural expansion and the fate of global conservation priorities

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Non-governmental organizations have proposed nine different global prioritization schemes, some of them focusing on areas with low vulnerability (a proactive reasoning) and some others targeting areas with high vulnerability (a reactive reasoning). The main threat to the remaining natural habitats of these areas is the expansion of agriculture. We evaluated the spatial congruence between agricultural land cover and global conservation priority areas in the present and in the future using a spatial model of land use cover change from 2000 to 2100. We showed that by the year 2000, the extent of agriculture was larger in reactive priority areas than in the rest of the world, while it was smaller in areas highlighted as important under proactive approaches. During the twenty-first century, we found a general increase in agriculture area and the difference between the approaches of conservation schemes is expected to hold true, although we found that high-biodiversity wilderness areas (HBWA), a proactive scheme, may be specially affected in certain scenarios of future change. These results suggest an increase in conservation conflicts over this century. In face of agricultural expansion, both kinds of prioritization approaches are important, but different strategies of protection are necessary (e.g., reactive approaches need the urgent protection of remnant habitats, while proactive ones have space to create megareserves). Further, conservation organizations must include agriculture expansion data and their uncertainty in conservation planning in order to be more successful in biological conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Araújo MB (2003) The coincidence of people and biodiversity in Europe. Global Ecol Biogeogr 12:5–12

    Article  Google Scholar 

  • Balmford A, Long A (1994) Avian endemism and forest loss. Nature 372:623–624

    Article  CAS  Google Scholar 

  • Balmford A, Moore JL, Brooks T et al (2001) Conservation conflicts across Africa. Science 291:1619–2616

    Article  Google Scholar 

  • Balmford A, Green RE, Scharlemann JPW (2005) Sparing land for nature: exploring the potential impact of changes in agricultural yield on the area needed for crop production. Global Change Biol 11:1594–1605

    Article  Google Scholar 

  • Barlow J, Gardner TA, Araujo IS et al (2007) Quantifying the biodiversity value of tropical primary, secondary and plantation forests. Proc Natl Acad Sci USA 104:18555–18560

    Article  PubMed  CAS  Google Scholar 

  • Baudron F, Corbeels M, Monicat F et al (2009) Cotton expansion and biodiversity loss in African savannahs, opportunities and challenges for conservation agriculture: a review paper based on two case studies. Biodivers Conserv 18:2625–2644

    Article  Google Scholar 

  • Brashares JS, Arcese P, Sam MK (2001) Human demography and reserve size predict wildlife extinction in West Africa. Proc R Soc B 268:2473–2478

    Article  PubMed  CAS  Google Scholar 

  • Brooks TM, Mittermeier RA, Fonseca GAB et al (2006) Global biodiversity conservation priorities. Science 313:58–61

    Article  PubMed  CAS  Google Scholar 

  • Bryant D, Nielsen D, Tangley L (1997) Last Frontier Forests. World Resource Institute, Washington, DC

    Google Scholar 

  • Cincotta RP, Wisnewski J, Engelman R (2000) Human population in the biodiversity hotspots. Nature 404:990–992

    Article  PubMed  CAS  Google Scholar 

  • Dobson AP, Rodríguez JP, Roberts WM (2001) Synoptic tinkering: integrating strategies for large-scale conservation. Ecol Appl 11:1019–1026

    Article  Google Scholar 

  • Eastman JR (2003) IDRISI Kilimanjaro–Guide to GIS and Image Processing. Clark Labs, Worcester

    Google Scholar 

  • Ewers RM, Scharlemann JPW, Balmford A et al (2009) Do increases in agricultural yield spare land for nature? Global Change Biol 15:1716–1726

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574

    Article  PubMed  CAS  Google Scholar 

  • Fonseca GAB, Balmford A, Bibby C et al. (2000) … following Africa’s lead in setting priorities. Nature 405:393–394

    Google Scholar 

  • Green RE, Cornell SJ, Scharlemann JPW, Balmford A (2005) Farming and the fate of wild nature. Science 307:550–555

    Article  PubMed  CAS  Google Scholar 

  • Hoekstra JM, Boucher TM, Ricketts et al (2005) Confronting a biome crisis: global disparities of habitat loss and protection. Ecol Lett 8:23–29

    Article  Google Scholar 

  • Huston M (1993) Biological diversity, soils, and economics. Science 262:1676–1680

    Article  PubMed  CAS  Google Scholar 

  • IBGE (Instituto Brasileiro de Geografia e Estatística) (2010) Comparison of Censuses of Agriculture structural data results—Brazil—1970/2006. http://www.ibge.gov.br. Cited 15 Apr 2010

  • IMAGE Team (2001) The IMAGE 2.2 implementation of the SRES Scenarios. A comprehensive analysis of emissions, climate change and impacts in the 21st century. Netherlands Environmental Assessment Agency (MNP) CD-ROM Publication 500110001, Bilthoven, The Netherlands

  • INPE (Instituto Nacional de Pesquisas Espaciais) (2010) Projeto PRODES: Monitoramento da Floresta Amazônica Brasileira por Satélite. http://www.obt.inpe.br/prodes. Cited 15 Apr 2010

  • IPCC (Intergovernmental Panel on Climate Change) (2000) Special report on emissions scenarios. Cambridge University Press, Cambridge

    Google Scholar 

  • IUCN (International Union for Conservation of Nature) (2009) 2009 IUCN red list of threatened species. http://www.iucnredlist.org. Cited 28 Oct 2009

  • Klink CA, Moreira AG (2002) Past and current human occupation, and land use. In: Oliveira PS, Marquis RJ (eds) The Cerrados of Brazil. Ecology and natural history of a Neotropical savanna. Columbia University Press, New York

    Google Scholar 

  • Laurance WF (1999) Reflections on the tropical deforestation crisis. Biol Cons 91:109–117

    Article  Google Scholar 

  • Loyola RD, Oliveira-Santos LGR, Almeida-Neto M et al (2009a) Integrating economic costs and biological traits into global conservation priorities for carnivores. PLoS ONE 4:e6807

    Article  PubMed  Google Scholar 

  • Loyola RD, Kubota U, Fonseca GAB, Lewinsohn TM (2009b) Key Neotropical ecoregions for conservation of terrestrial vertebrates. Biodiv Conserv 18:2017–2031

    Article  Google Scholar 

  • Luck GW (2007) The relationships between net primary productivity, human population density and species conservation. J Biogeography 34:201–212

    Article  Google Scholar 

  • Mace GM, Balmford A, Boitani L et al. (2000) It’s time to work together and stop duplicating conservation efforts… Nature 405:393

    Google Scholar 

  • Main MB, Roka FM, Noss RF (1999) Evaluating costs of conservation. Conserv Biol 13:1262–1272

    Article  Google Scholar 

  • McKinney ML (2001) Effects of human population, area, and time on non-native plant and fish diversity in the United States. Biol Cons 100:243–252

    Article  Google Scholar 

  • Metzger JP (2009) Conservation issues in the Brazilian Atlantic forest. Biol Cons 142:1138–1140

    Article  Google Scholar 

  • Millenium Ecosystem Assessment (2005) Ecosystems and human well-being: scenarios, vol 2. Island Press, Washington, DC

    Google Scholar 

  • Mittermeier RA, Gil PR, Mittermeier CG (1997) Megadiversity. CEMEX, Mexico City

    Google Scholar 

  • Mittermeier RA, Mittermeier CG, Brooks TM et al (2003) Wilderness and biodiversity conservation. Proc Natl Acad Sci USA 100:10309–10313

    Article  PubMed  CAS  Google Scholar 

  • Mittermeier RA, Gil PR, Hoffman M et al (2004) Hotspots revisited: earth’s biologically richest and most threatened terrestrial ecoregions. CEMEX, Mexico City

    Google Scholar 

  • Myers N (1983) A priority-ranking strategy for threatened species? The Environmentalist 3:97–120

    Google Scholar 

  • Myers N, Kent J (2003) New consumers: the influence of affluence on the environment. Proc Natl Acad Sci USA 100:4963–4968

    Article  PubMed  CAS  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG et al (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–857

    Article  PubMed  CAS  Google Scholar 

  • Olson DM, Dinerstein E (1998) The global 200: a representation approach to conserving the earth’s most biologically valuable ecoregions. Conserv Biol 12:502–515

    Article  Google Scholar 

  • Olson DM, Dinerstein E (2002) The global 200: priority ecoregions for global conservation. Ann Missouri Bot Gard 89:199–224

    Article  Google Scholar 

  • Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  PubMed  CAS  Google Scholar 

  • Peres CA (2005) Why we need megareserves in Amazonia. Conserv Biol 19:728–733

    Article  Google Scholar 

  • Peterson GD, Cumming GS, Carpenter SR (2003) scenario planning: a tool for conservation in an uncertain world. Conserv Biol 17:358–366

    Article  Google Scholar 

  • Pressey RL, Cabeza M, Watts ME et al (2007) Conservation planning in a changing world. Trends Ecol Evol 22:583–592

    Article  PubMed  Google Scholar 

  • Rangel TFLVB, Bini LM, Diniz-Filho JAF et al (2007) Human development and biodiversity conservation in Brazilian Cerrado. Appl Geogr 27:14–27

    Article  Google Scholar 

  • Redford KH, Coppolillo P, Sanderson EW et al (2003) Mapping the conservation landscape. Conserv Biol 17:116–131

    Article  Google Scholar 

  • Reganold JP, Glover JD, Andrews PK et al (2001) Sustainability of three apple production systems. Nature 410:926–930

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues ASL, Ewers RM, Parry L et al (2009) Boom-and-bust development patterns across the amazon deforestation frontier. Science 324:1435–1437

    Article  PubMed  CAS  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  PubMed  CAS  Google Scholar 

  • Salafsky N, Margoluis R, Redford K et al (2002) Improving the practice of conservation: a conceptual framework and agenda for conservation science. Conserv Biol 16:1469–1479

    Article  Google Scholar 

  • Sanderson EW, Jaiteh M, Levy MA et al (2002) The human footprint and the last of the wild. Bioscience 52:891–904

    Article  Google Scholar 

  • Scharlemann JPW, Green RE, Balmford A (2004) Land-use trends in endemic bird areas: global expansion of agriculture in areas of high conservation value. Global Change Biol 10:2046–2051

    Article  Google Scholar 

  • Stattersfield AJ, Crosby MJ, Long AJ et al (1998) Endemic bird areas of the world. BirdLife International, Cambridge

    Google Scholar 

  • R Development Core Team (2008) R: A language and environment for statistical computing, ver. 2.8.1. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org. Cited 28 Oct 2009

  • Thompson K, Jones A (1999) Human population density and prediction of local plant extinction in Britain. Conserv Biol 13:185–189

    Article  Google Scholar 

  • Tilman D, Fargione F, Wolff B et al (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  PubMed  CAS  Google Scholar 

  • Turner BL, Lambin EF, Reenberg A (2007) The emergence of land change science for global environmental change and sustainability. Proc Natl Acad Sci USA 104:20666–20671

    Article  PubMed  CAS  Google Scholar 

  • UNEP (United Nations Environment Program) (2002) GEO: global environmental outlook 3. Past, Present and Future Perspectives, Earthscan, London

    Google Scholar 

  • United Nations Population Division (2008) World Population Prospects: The 2008 Revision. http://www.un.org/esa/population. Cited Apr 15 2010

  • Vitousek PM, Mooney HA, Lubchenco J et al (1997) Human domination of earth′s ecosystems. Science 277:494–499

    Article  CAS  Google Scholar 

  • WWF, IUCN (1994–1997) Centres of plant diversity. WWF and IUCN, Gland

Download references

Acknowledgments

We thank Daniel Brito, Andreas Kindel, Eduardo dos Santos Pacífico, and two anonymous reviewers for their critical reading and valuable comments. Thomas Brooks, Mike Hoffman, Mark Balman, Timothy Boucher, Simon Blyth, and the IMAGE Team in the name of Rineke Oosterijk, provided data and assistance. Work by R. Dobrovolski is supported by a CNPq fellowship. R. D. Loyola is supported by CNPq and CAPES. Work by J. A. F. Diniz-Filho and P. De Marco Jr. has been continuously supported by productivity grants from CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Dobrovolski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dobrovolski, R., Diniz-Filho, J.A.F., Loyola, R.D. et al. Agricultural expansion and the fate of global conservation priorities. Biodivers Conserv 20, 2445–2459 (2011). https://doi.org/10.1007/s10531-011-9997-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-9997-z

Keywords

Navigation